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Abstract. We consider populations growth models with Allee effect, proportional to beta densities
with shape parameters p and 2, where the dynamical complexity is related with the Malthusian
parameter r. For p > 2, these models exhibit a population dynamics with natural Allee effect.
However, in the case of 1 < p≤ 2, the proposed models do not include this effect. In order to inforce
it, we present some alternative models and investigate their dynamics, presenting some important
results.
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1. MOTIVATION AND PURPOSE

The families of unimodal maps are used in exhaustive numerical studies, allowing
a structural and detailed theoretical description in terms of symbolic dynamics. The
unimodal maps theory can be used in several contexts in the biological, economical and
social sciences. In population dynamics, aiming to model the growth of a certain species,
the use of those families has been frequent. The logistic map has been used with success
to model the population growth for some species, but is inadequate for other.

The Verhulst Model is proportional to the Beta(2,2) density. Another models
proportional to the Beta(p,2) densities, with p ∈ ]1,+∞[, presented in [1], can be
interesting to model population growth in populations for whom the Verhulst Model
fails. After the theoretical deduction of these models and the characterization of the
respective family of unimodal maps, we analyze their behavior as a function of the
considered parameters ranges, defining a variation interval to them. The universality
of the Feigenbaum constant is underlined.

Two interesting questions deserve special mention: the negativity of the Schwarz
derivative, for 1 < p < 2, and the natural Allee effect for p > 2. The negativity of
the Schwarz derivative, plays an important role in unidimensional dynamics, see for
example [10]. This condition is violated in a small interval of the maps domain of
this family [0,c[∪]c,1], where c is the critical point of the map, when p ∈ ]1,2[, but
indeed it does not affect the dynamical behavior of the map. A weak point of the logistic
model and of the models proportional to the Beta(p,2) densities, with p ∈ ]1,2[, is
the inexistence of Allee effect. We put forward three models with Allee effect, which
therefore can model casual growths of some species in a more realistic way in ecological
terms.
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2. FAMILY OF MODELS PROPORTIONAL TO THE Beta(p,2)
DENSITIES, WITH p ∈ ]1,+∞[

Consider that the equation which represents the population growth rate is

d
dt N(t) = r∗N(t)p−1

(
1− N(t)

K

)
, with p ∈ ]1,+∞[.

Doing the discretization of the model in a similar way that we made for the models
proportional to the Beta(p,2) densities, with p ∈ N\{1,2}, see [1], we have

N(tn+1) = r∗N p−1(tn)
(

1− N(tn)
K

)

⇔ N(tn+1)
K

= r∗K p−2
(

N(tn)
K

)p−1 (
1− N(tn)

K

)
.

Taking into account that xn = N(tn)
K and r = r∗K p−2, the discretized model, which is

proportional to the Beta(p,2) density, with p ∈ ]1,+∞[, is given by

xn+1 = rxp−1
n (1− xn). (2.1)

Let us consider the family of unimodal maps fr,p : [0,1]→ [0,1], with two parameters
p and r, whose maximum variation intervals are given respectively by p ∈ ]1, pmc] and
r ∈]0,r(pmc)], defined by:

fr,p = rxp−1(1− x)

which satisfies the following conditions:

• fr,p ∈C3 ([0,1]);
• f ′r,p(x) 6= 0,∀x 6= c (c is the critical point of fr,p);
• f ′r,p(c) = 0 and f ′′r,p(c) < 0 meaning that fr,p is strictly increasing in [0,c [ and

strictly decreasing in ]c,1 ];
• fr,p(0) = fr,p(1) = 0;
• f0,p(c) = 0 and fr(pmc),p(c) = 1;

• ∀x 6= c,S ( fr,p(x)) < 0 where S ( fr,p(x)) =
f ′′′r,p(x)
f ′r,p(x)

− 3
2

(
f ′′r,p(x)
f ′r,p(x)

)2
represents the

Schwarz derivative of fr,p. Notice that S ( fr,p(c)) =−∞.

Observe that, for the fr,p to be unimodal, the value of the parameter p has to be greater
than one. The maximum value considered for the parameter p in this study, denoted by
pmc, was 20, the largest value for which the model can be realistic. In fact, the value
r(pmc) is the value of the parameter r corresponding to the full shift for p = pmc. The
two parameters r and p, associated to these unimodal maps fr,p, are shape parameters.
The parameter r is related to the height of the curve, while the parameter p is associated
with its skewness. For any fixed p > 1, the value of r = 0 makes no sense because there
is no curve in this case; as the value of the parameter r increases, we get higher curves,
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until the value of r corresponds to the full shift, when the height of the curve attains
its maximum value, 1, see the plot in Figure 1. Considering for each p the value of the
parameter r for which we obtain the full shift, we conclude that the curve of the map
fr,p can have three different patterns of skewness, as shown in Figure 2. Analyzing
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FIGURE 1. Populational growth rates using the model proportional to the Beta(3.5,2) density
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FIGURE 2. Three types of format to the populational growth rates using the model proportional to the
Beta(p,2) density, with p > 1: curve skewed to the left, simmetric and skewed to the right

Figure 2, we see that the unimodal dynamics does not make sense for values of p too
much close to 1, because the associated curves have an enormous skewness to the left;
and also does not make sense for high values of p, since the corresponding curves
become extremely skew to the right. Unimodal maps fr,p, with these extreme values
for the parameter p, hardly could model populations growths for any species. So, we
consider that the maximum value is pmc = 20, and so, with the maximum value of the
parameter r = 53.001 corresponding to the full shift. Observing Figure 1, we can verify
that unimodal maps fr,p, always have the fixed point x∗ = 0, for any r > 0 and p > 1.

Populational Growth Model Proportional to Beta Densities October 30, 2008 3



However, this application has another positive fixed point besides 0, for r > r1, in the
case of p ∈ ]1,2[. For p ∈ [2, pmc], these maps have two more fixed points besides 0,
for values of r > r1, where r1 is the first value of the parameter r for which it appears an
orbit of period 1. For each fixed parameter value p > 1, the critical point of the map fr,p

is always given by c = p−1
p . The dynamical behavior of all unimodal maps fr,p for each

fixed p > 1, always shows the same pattern: when we change the value of the parameter r
we have successive bifurcations usually denoted by period doubling cascade. Associated
to these cascades we have always an universal constant, denominated the Feigenbaum
constant, see [1].

3. DETERMINISTIC POPULATIONAL GROWTH MODELS
WITH ALLEE EFFECT. HEURISTIC APPROACH

The essence of the heuristic approach, in which the deterministic models used to model
populations growths of species that exhibit Allee effect are based, date back at least
to Odum and Allee (1954), see [15]. The per capita growth rate, dependent on the
expected or observed population size, is modeled by a suitable function. We shall
consider only one population, whose growth in a homogeneous environment is described
by the ordinary differential equation

dN(t)
dt

= N(t) g(N(t)) (3.1)

or by the difference equation

Nt+1−Nt = Nt g(Nt) . (3.2)

In both cases N is the population size and g(N) denote the per capita growth rate
dependent of the size N, which is negative for decreasing populations and positive for
increasing populations.

In this work, we consider the cases where the Allee effect occurs at small population
sizes; the examples where the Allee effect occurs at large population sizes are few,
see for example [12]. The per capita growth rate g(N) that describe the Allee effect
is an unimodal function, with a long tail; the maximum rate is obtained for only one
positive dimension, N = C > 0. Below this “optimal” population size, positive effects
of the presence of individuals of the same species prevail and g(N) is increasing, while
above this “optimal” population size, the negative dependence of the population size
dominates and so the per capita growth rate, g(N) is decreasing. Most of the models
include overcapacity and avoid the indefinite growth by assuming a negative per capita
growth rate, g(N) < 0, for a population size sufficiently large. In the aim of analyzing
the stability, the values of the per capita growth rate g(N) should have small oscillations
near the equilibrium point (slightly increasing until the equilibrium point, and slightly
decreasing soon after this value), and should be a continuous function for other values
of the population size N, as in the two proposed models, (3.1) and (3.2), see [4]. In the
difference equations, (3.2), the per capita growth rate should satisfy as well the condition
g(Nt)≥−1 to have always Nt > 0.
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In these heuristic population growth models, (3.1) e (3.2), three basic settings can
occur, see [4]:
Unconditional-Extinction (UE) : if the Allee effect is too much strong, the per capita

growth rate g(N) is negative for all the population size N and the populations will
inevitably become extinct, whatever the value of its initial size;

Extinction-Survival (ES) : at moderate levels of the Allee effect, the per capita growth
rate g(N) is positive for intermediate values of the population size N, but is negative
for very low or very high values of the population size N. Two equilibrium values
exist: the smaller one, which is unstable, denoted by E i, and the larger Es which
is locally stable. The population size at the instant 0, denoted by E0, that is locally
stable, is called trivial equilibrium. The populations whose dimension at 0 is smaller
than the value E i will become extint, while those with dimension at 0 is greater than
the value E i stabilize at the value Es;

Unconditional-Survival (US) : when the Allee effect gets weaker, the unstable
equilibrium E i vanishes, the trivial equilibrium E0 becomes unstable every time
the per capita growth rate g(N) is positive for all the population size N > 0, and the
population stabilizes in Es, even though its per capita growth rate is still increasing
with N at low populations sizes.

The setting ES is the most familiar consequence of the Allee effect, and the issue of
extinction or survival of the population, is of utmost practical relevance, see [4].

4. MODELS BASED ON MAPS PROPORTIONAL TO THE
Beta(p,2) DENSITIES, WITH p ∈ ]1,2[ AND ALLEE EFFECT

As it happens in the classical logistic model, and also for the models proportional to
Beta(p,2) densities, with 1 < p < 2, the inexistence of a rarefaction critical dimension
E, and consequent inexistence of the Allee effect is a drawback that can be corrected, as
done usually in the logistic model, described below.

4.1. Logistic map modified with Allee effect

The logistic model is frequently used to model the population growth of certain
species. However, several criticisms have been made, namely the fact that this model
doesn’t implement the Allee effect. In fact, the logistic equation assumes that the
population always increases, even when its dimension is low; besides, in this case
(small population size), this model assumes a fast population increase. At first sight,
this could seem acceptable because the environment resources are abundant to the few
individuals in the population. However, this assumption is questionable, since for many
populations there is a minimal population size (rarefaction critical density), denoted
by E, required for reproduction. Below E, the probability that individuals of opposite
sexes effectively meet for reproduction is so small that the population can not recover its
dimension in order to substitute those who die, and finally becomes extinct. In this case,
the instantaneous growth rate r is negative. Above E, the probability of the individuals
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meetting mates for reproduction is enough for the population to grow until its carrying
capacity K. In this situation, the instantaneous growth rate r is positive. This minimal
population size E corresponds to a null growth rate, which allows that the population
maintains exactly its dimension at a fixed value. At this density E, the population
is incapable to grow up and maintains its equilibrium value, until some disturbance
happens, leading either to extintion or to growth.

Obviously the rarefaction critical density E is smaller than the carrying capacity
K. Between E and K there is a variety of populations dimensions for which the
instantaneous growth rate is positive.

The inexistence of a rarefaction critical density E, and consequent inexistence of
the Allee effect in the logistic model is a drawback that can be corrected. Several
investigators discussed this issue (see for example the ones mentioned by [4]),
suggesting various models for the per capita growth rate. The basic idea is to introduce
a term in the classic logistic model, T (N(t)), forcing the rate g(N(t)) to be negative as
soon as the population size N(t) is smaller than the rarefaction critical density E:

g(N(t)) =
dN(t)

dt
1

N(t)
= r

(
1− N(t)

K

)
T (N(t)) .

4.2. Models based on maps proportional to Beta(p,2) densities, with
p ∈ ]1,2[ and Allee effect

Using a similar procedure to the one used for correct the logistic model, we are going
to deduce three new models for the per capita growth rate. So, the basic idea is to
introduce in the models proportional to Beta(p,2) densities, with 1 < p < 2, a new term
T (N(t)), in such a way that this rate, g∗ (N(t)), is negative as soon as the population size
N(t) gets smaller than the rarefaction critical density E:

g∗ (N(t)) =
dN(t)

dt
1

N(t)
= rN(t)p−2

(
1− N(t)

K

)
T (N(t)) .

Therefore, using the same three terms T (N(t)) suggested by several authors for the
logistic model, see [4], we obtain the three maps to model the per capita growth rate of
a population.

1. Using the term T (N(t)) =
(

1− E
N(t)

)
= N(t)−E

N(t)

suggested in [16, 7, 8, 9, 5] to inforce the Allee effect in the logistic model,
we obtain the following function for the per capita growth rate

g∗1 (N(t)) = r∗N(t)p−2
(

1− N(t)
K

)(
1− E

N(t)

)
(4.1)

and consequently, the corresponding population growth rate is given by

f ∗1 (N(t)) = N(t) g∗1 (N(t)) = r∗N(t)p−1
(

1− N(t)
K

)(
1− E

N(t)

)
. (4.2)
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The model (4.2) can be discretized, in order to have the properties allowing its
study using the symbolic dynamic methods. Two important points: the signal of
the Schwarz derivative it is not always negative, for 1 < p < 2, and for certain
instantaneous growth rates r the discreet maps that represent the growth rate with
Allee effect take values out of the invariant interval, suggesting the need to study
Cantor sets. The discretized model, designated by Model 1, can be obtained from
the differential equation (4.2), considering that xn = N(tn)

K and r = r∗K p−2, in the
following way:

N(tn+1) = f ∗1 (N(tn))⇔ xn+1 = rxp−2
n (1− xn)

(
xn− E

K

)
.

Therefore, Model 1 corrected with Allee effect is a map h∗1 : [0,1]→R, defined by:

h∗1(x) = rxp−2 (1− x)
(

x− E
K

)
.

2. If we use the term T (N(t)) =
(

N(t)
K − E

K

)
= N(t)−E

K

presented in [14, 2, 3, 13] to correct the inexistence of the Allee effect in the
classical logistic model, we have

g∗2 (N(t)) = r∗N(t)p−2
(

1− N(t)
K

)(
N(t)

K
− E

K

)
(4.3)

and therefore, the corresponding population growth rate is given by

f ∗2 (N(t)) = N(t) g∗2 (N(t)) = r∗N(t)p−1
(

1− N(t)
K

)(
N(t)

K
− E

K

)
. (4.4)

The discretized model, designated by Model 2, can be obtained from (4.4) as in the
previous model:

N(tn+1) = f ∗2 (N(tn))⇔ xn+1 = rxp−1
n (1− xn)

(
xn− E

K

)
.

So, Model 2 corrected with Allee effect is a map h∗2 : [0,1]→ R, defined by:

h∗2(x) = rxp−1 (1− x)
(

x− E
K

)
.

3. In an alternative way, if we use the term T (N(t)) =
(

N(t)
E −1

)
= N(t)−E

E

suggested in [11, 6], we get the following function to the per capita growth
rate

g∗3 (N(t)) = r∗N(t)p−2
(

1− N(t)
K

)(
N(t)

E
−1

)
(4.5)
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and so, the corresponding population growth rate is given by

f ∗3 (N(t)) = N(t) g∗3 (N(t)) = r∗N(t)p−1
(

1− N(t)
K

)(
N(t)

E
−1

)
. (4.6)

The discretized model, designated by Model 3, obtained from (4.6), is given by:

N(tn+1) = f3 (N(tn))⇔ xn+1 = rxp−1
n (1− xn)

(
K
E

xn−1
)

.

So, Model 3 corrected with Allee effect is a map h∗3 : [0,1]→ R, defined by:

h∗3(x) = rxp−1 (1− x)
(

K
E

x−1
)

.

5. CHARACTERIZATION OF THE NEW MODELS

We should remark some aspects in what concerns to the new models presented above.
So, in this section we established two propositions, and state some important notes about
the characteristics of these models.

Proposition 1. The models based on the maps proportional to the Beta(p,2) densities,
with p ∈ ]1,2[, modified with the Allee effect, h∗i , with i = 1,2,3, verify the following
propositions:

1. The conditions of the setting ES (Extinction-Survival), which is the more usual
consequence of the Allee effect, are satisfied by all the models presented.

2. The conditions of the setting US (Unconditional-Survival), are satisfied by the
Models 1 and 2, but not by the Model 3.

3. None of these models satisfies the conditions of the setting UE
(Unconditional-Extinction).

Proof. 1. Having in mind the conditions of the setting ES, we have, for 1 < p < 2, that
the per capita growth rates pertaining to any of these models, given respectively by
(4.1), (4.3) and (4.5), are positive if and only if

(0 < E < K)∧
[(r < 0)∧ ((0 < N(t) < E)∨ (N(t) > K))]∨ [(r > 0)∧ (E < N(t) < K)] .

2. (a) In what concerns Model 1 per capita growth rate g∗1 (N(t)), given by
expression (4.1), considering E = N(0) = 0, we get

g∗1 (N(t)) = r∗N(t)p−2
(

1− N(t)
K

)
.

For 1 < p < 2, as 0≤E ≤K and 0≤N(t)≤K, we have N(t)p−2≥ 0 and 0≤
N(t)

K ≤ 1, so 1− N(t)
K ≥ 0 and considering r∗> 0, we have g∗1 (N(t))≥ 0.
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(b) In what concerns Model 2 per capita growth rate g∗2 (N(t)), given by
expression (4.3), if E = N(0) = 0, then we have

g∗2 (N(t)) = r∗N(t)p−2
(

1− N(t)
K

)(
N(t)

K

)
.

For 1 < p < 2, as 0 ≤ E ≤ K and 0 ≤ N(t) ≤ K, then N(t)p−2 ≥ 0 and 0 ≤
N(t)

K ≤ 1, therefore 1− N(t)
K ≥ 0 and having in mind that r∗ > 0, we have

g∗2 (N(t))≥ 0.
(c) In what concerns Model 3 per capita growth rate g∗3 (N(t)), given by (4.5), for

1 < p < 2, considering E = N(0) = 0, the expression of g∗3 (N(t)) makes no
sense because it includes the ratio N(t)

E which as no meaning. So, the Model 3
does not satisfy the conditions for the setting US.

3. For any of the three models, the per capita growth rate g∗i (N(t)), with i = 1,2,3, is
not negative for all the population sizes N(t). In fact, g∗i (N(t)) < 0, for 1 < p < 2,
if and only if

(0 < E < K)∧[
[(r < 0)∧ (E < N(t) < K)] ∨ [(r > 0)∧ ((N(t) > K)∨ (0 < N(t) < E))]

]
.

The condition (N(t) > K) is impossible, because K corresponds to the carrying
capacity. So, if r > 0 then g∗i (N(t)) is negative only if 0 < N(t) < E, and therefore
it is not negative to any N(t). If r < 0 then g∗i (N(t)) is negative only if E < N(t) < K
and not in all the interval range of N(t). Therefore, none of the presented models
satisfy the setting UE.

So, we can state that Models 1 and 2 for the per capita growth rate are more flexible
than Model 3, because this one only satisfies the conditions of one setting while the
other two models satisfy the conditions of two settings. The Schwarz derivatives of these
models verify the following result:

Proposition 2. The Schwarz derivatives of the Models h∗i , with i = 1,2,3, do not depend
on the value of the Malthusian parameter r and satisfy Sh∗2(x) = Sh∗3(x).

Proof. Having in mind the expressions of the Schwarz derivatives for these models,
which are given by:

Sh∗1(x) = −−2EK(−2+ p)px
(
3+4p(−1+ x)+ p2(−1+ x)2 +4x− x2)

2x2 (K(1+ p(−1+ x))x+E(−2+ p+ x− px))2

−E2(2−3p+ p2)
(
6+ p2(−1+ x)2− p(5−6x+ x2)

)

2x2 (K(1+ p(−1+ x))x+E(−2+ p+ x− px))2

−K2(−1+ p)px2(2+ p2(−1+ x)2 +4x+ p(−3+2x+ x2))
2x2 (K(1+ p(−1+ x))x+E(−2+ p+ x− px))2
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Sh∗2(x) = Sh∗3(x) =−−2EK(−1+ p2)x
(

p2(−1+ x)2 +6x+2p(−1+ x2)
)

2x2 (Kx(p(−1+ x)+ x)+E(−1+ p− px))2

−E2(−1+ p)p
(
2+ p2(−1+ x)2 +4x+ p(−3+2x+ x2)

)

2x2 (Kx(p(−1+ x)+ x)+E(−1+ p− px))2

−K2 p(1+ p)x2 (
p2(−1+ x)2 +2x(2+ x)+ p(−1−2x+3x2)

)

2x2 (Kx(p(−1+ x)+ x)+E(−1+ p− px))2

in fact we verify that none of them depend on r and Sh∗2(x) = Sh∗3(x).

Remark 5.1. For any of the models h∗i , with i = 1,2,3, the negativity of the Schwarz
derivative is not verified in all the interval [0,1]. This unimodal maps property is not
satisfied in a subinterval [0,xdi]⊂ [0,1].

This positivity of the Schwarz derivative near the origin is due to the fact that the first
three derivatives of each one of the models h∗i , with i = 1,2,3, go to ∞ when x goes to 0.

Moreover, the value of the point xdi depends on the model h∗i , which is associated to
a parameter p ∈]1,2[, and it also depends on the values of E and K.
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