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Preface

The Extremes Day will be centered around the “Gulbenkian Lecture” of Laurens
de Haan. The Calouste Gulbenkian Foundation conferred a Gulbenkian Professorship
to Laurens de Haan, Professor at the Faculty of Economics, Erasmus University
Rotterdam, Honorary Professor at Peking University, China, and Honorary Doctor
at Lisbon University, Portugal.

Laurens de Haan has one of the most prominent careers in the XXth century
Statistics. He may indeed be considered as one of the world exponents in the area
of Statistics of Extremes and his Ph.D. thesis, written at 1970, and entitled On
Regular Variation and its Application to the Weak Convergence of Sample Extremes,
is still an almost compulsory reference in the field. Laurens de Haan has contributed
to the development of well-built theories in areas like Extended Regular Variation,
Multivariate Extremes, Semi-Parametric Estimation and Extremes for Dependent
Sequences. Recently, he has been paying special attention to the field of Extremes in
Infinite-Dimensional Spaces. Beyond the building of a unified and rigorous Extreme
Value Theory, Laurens de Haan has also had a pioneering work in the solution of
important environmental problems, related to the modelling of rivers, sea and dams,
and the specification of new standards for the Dutch sea defences.

Since 1997, Laurens de Haan has regularly visited Lisbon, and this has led to
the development of joint research work with several members of CEAUL (Centro de
Estat́ıstica e Aplicações da Universidade de Lisboa), as well as inspired the scientific
cooperation with other members of the Portuguese statistical community. On the
grounds of the strong cooperation developed between Laurens de Haan and members
of DEIO/FCUL (Departamento de Estat́ıstica e Investigação Operacional/Faculdade
de Ciências da Universidade de Lisboa) and CEAUL, M. Ivette Gomes (DEIO,
FCUL) put forward a proposal for the award of a Gulbenkian Professorship, which
naturally has been granted.
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Under this Gulbenkian Professorship, Laurens de Haan has been a visiting profes-
sor at FCUL (DEIO), from the 1st of January until the 31st of December 2005. On
the occasion of his Gulbenkian Lecture, entitled ON EXTREME VALUE THEORY.
OR: HOW TO LEARN FROM ALMOST DISASTROUS EVENTS, CEAUL and
the ERAS project, POCI/MAT 58876/2004, are organizing an “Extremes Day” in
honour of Laurens de Haan. In this “Extremes Day” we are interested in detecting
the new advances in the field of Statistics of Extremes, and their applications to
Risk, Safety and the Environment, the main topics of ERAS project.

We thank Calouste Gulbenkian Foundation and the Faculty of Science, University
of Lisbon, for sponsoring this event. And we indeed thank Professor Laurens de
Haan for his generous sharing of ideas with the members of CEAUL and DEIO.

M. Isabel Fraga Alves
M. Ivette Gomes
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ON EXTREME VALUE THEORY
OR: HOW TO LEARN FROM ALMOST

DISASTROUS EVENTS2

•• Gulbenkian Lecture ••

Laurens de Haan
Erasmus University Rotterdam, The Netherlands

and

CEAUL, Universidade de Lisboa, Portugal

Everybody has a personal bank account. Every month the salary is added to the
balance. Now suppose that you are a big spender and you spend most of the money
every month. It would be unpleasant if the balance would go down to zero during the
month but this has never happened. You could be afraid of this event to happen and
you would like to know the probability that in fact the balance would be depleted
during a month. This is a difficult statistical problem since you want to estimate the
probability of an event that has never happened and this seems impossible.

Other similar examples are:

• Banks and insurance companies want to (have to) assess the probability that
they go bankrupt in some given period of time. The regulator forces them to
do so.

• A communication tower is much affected by wind storms, but the tower has
never collapsed. Since much depends on this tower, one needs to know the
probability of collapse.

Problems of this kind can be attacked using a special branch of the area of
mathematical statistics called extreme value theory. The theory has been developed
over the last 70 years by scientists mainly from Europe and notably by Professor
Tiago de Oliveira from this university. We are now able to provide a reliable answer
to the mentioned questions.

2Partially supported by FCT/POCTI and POCI/FEDER.
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I want to explain some ideas and results of extreme value theory, in particular what
is needed to answer the stated problems.

I shall do so by discussing a specific problem in which I have been involved. It
has to do with the coastal protection of the Netherlands against floods.

In some places the low lying parts of the country are protected by natural sand
dunes and in other parts by man-made dykes. The two situations call for different
approaches. In the case of protection by sand dunes the height of the dunes is usually
sufficient but the problem is that during a heavy storm big chunks of the sand dunes
are washed away. Hence the safety is expressed not in terms of meters (i.e. the height)
but in terms of square meters (i.e. the sand content).

In case the strip of coast is protected by a dyke only the height is important since
usually a storm does not inflict damage to the well fortified outer part of the dyke.
But then the question is: how high should we build the dyke in order to achieve a
sufficiently low probability of overflowing? This is a kind of non standard problem in
statistics since there may never have been a flood at that point of the coast. I shall
try to explain the main idea behind the approach to solve this problem. I shall not
use any mathematics or mathematical formulas, I shall try to explain everything just
by showing some graphs.



MODELING EXTREMAL DEPENDENCE

Holger Drees
Dept of Mathematics, University of Hamburg

Germany

Abstract:

The classical multivariate extreme value theory cannot distinguish asymptotically
between exact independence of the components of a random vector and a moderate
dependence which vanishes as the observations become more and more extreme. For
instance, the limit distribution of the standardized maxima of the components of a
bivariate normal random vector is the same for all correlations less than 1; hence it
does not reflect the strength of the dependence between the components. By contrast,
the model proposed by Ledford and Tawn (1997) captures the dependence structure
between the components of the exceedances over a high (yet finite) threshold much
more accurately. It has thus proved to be very useful for modeling the extremal
dependence, if one can take neither asymptotic dependence nor exact independence
of the components for granted. For example, large claims in different lines of busi-
ness of a non-life insurer often exhibit a clear positive dependence which vanishes
asymptotically when one considers the exceedances over increasing thresholds.

We discuss some estimators of the main parameters of the model by Ledford
and Tawn. Moreover, a graphical tool to asses the goodness-of-fit is introduced. In
analogy to the well-known Hill pp-plot, to this end one checks whether differences of
the logarithm of certain empirical probabilities lie approximately on a certain plane.
In addition to this purely data-analytic tool, we derive asymptotic confidence intervals
which enables us to check whether the observed deviations from the ideal plane can be
explained by random effects or whether they indicate that the model assumptions are
violated. These asymptotic results are based on approximations to certain empirical
processes established by Draisma et al. (2004). The practical usefulness of these tools
is demonstrated by examples from the insurance business and finance.

11
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TOPICS ON MULTIVARIATE AND
INFINITE-DIMENSIONAL EXTREMES3

Ana Ferreira
Departamento de Matemática, Instituto Superior de Agronomia

Portugal

Abstract: We shall discuss a few main results and concepts in multivariate and infinite-

dimensional extreme value theory, like limit distribution of normalized maxima and exponent

measure. They will be introduced in the multivariate context, and hopefully the infinite-

dimensional case will follow smoothly. The usefulness of the theory is exemplified with the

problem of failure set probability estimation in both situations.

Key words and phrases: multivariate and infinite-dimensional extreme value theory,

exponent measure, failure set estimation.

1. Introduction

One basic topic in multivariate extreme value theory is the limit distribution of nor-
malized maxima. Let (X,Y, . . . , Z) be a random vector with distribution function
(d.f.) F . A common approach is to take componentwise maxima, and examine the
convergence in distribution of the random vector,(

max(X1, . . . , Xn)− bn
an

,
max(Y1, . . . , Yn)− dn

cn
, · · · , max(Z1, . . . , Zn)− fn

en

)
where an, cn, . . . , en > 0 and bn, dn, . . . , fn real, are normalizing constants and
{(Xi, Yi, . . . , Zi)}ni=1 is an independent and identically distributed (i.i.d.) sample from
F (see e.g. de Haan and Resnick (1977) [36]; Resnick (1987) [54]; de Haan and Ferreira
(2006) [33]).

3Partially supported by FCT/POCTI and POCI/FEDER.
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Then the exponent measure can be obtained, a noteworthy feature in extreme
value theory. For instance we shall see its usefulness in estimating the probability of
failure set.

Similarly, extreme value theory in function space often starts with limit theory
for normalized maximum of i.i.d. random functions. Let C[0, 1] be the space of
continuous functions f on [0, 1] equipped with the supremum norm, sups∈[0,1] |f(s)|,
and X a random function with sample space in C[0, 1]. Then we mean to examine
the convergence in distribution in C[0, 1] of the random process{

max
1≤i≤n

Xi(s)− bs(n)

as(n)

}
s∈[0,1]

(1)

where the maximum is taken pointwise for each s ∈ [0, 1] and, as(n) > 0 and bs(n)
real, are continuous functions for s ∈ [0, 1] (see e.g. Giné, Hahn, and Vatan (1990)
[21]; de Haan and Lin (2001) [34]; de Haan and Ferreira (2006) [33]). One can then
obtain the exponent measure and we shall use it in the estimation of the probability
of a failure set in function space.

2. Multivariate Extremes

In the multivariate setting we discuss the bivariate case. The extension to higher
dimensions should de straightforward.

Let {(Xi, Yi)}ni=1, be i.i.d. random vectors from F (x, y) = P (X ≤ x, Y ≤ y). If
there exist an, cn > 0, and bn, dn real, and G is a d.f. with non-degenerate marginals
such that,

P

(
max(X1, . . . , Xn)− bn

an
≤ x, max(Y1, . . . , Yn)− dn

cn
≤ y
)

= Fn(anx+ bn, cny + dn)→d G(x, y), n→∞, (2)

then we have convergence in distribution of the joint normalized maxima and G is a
multivariate extreme value distribution.

Consider the standardization to Pareto marginals, i.e. the random vector
(1−F1(X))−1, (1−F2(Y ))−1) where F1, F2 are the marginal d.f.’s of F supposed con-
tinuous. The exponent measure can be obtained as the result of the following limit,
defined for all Borel sets A ⊂ [0,∞)2 with infx,y∈A max(x, y) > 0 and ν(∂A) = 0,

ν(A) := lim
n→∞

nP

{(
1

n(1− F1(X1))
,

1

n(1− F2(Y ))

)
∈ A

}
. (3)

It turns out that the exponent measure ν is finite on [0,∞)2 \ [0, a], ∀a > 0 and, in
particular, it possesses the following homogeneity property: for all sets A as above,

ν(cA) = c−1ν(A), ∀c > 0, (4)

where the set cA is obtained by multiplying all elements of A by the constant c.
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From the exponent measure or related functions, and their properties, one finds
ways to characterize multivariate extreme value distributions. For instance via the
function L and the level sets Qc (Huang (1992) [42]; de Haan and Ferreira (2006)
[33]) or the dependence functions from Sibuya (1960) [56] and Pickands (1981) [53].

Let us now see another application of the exponent measure. Suppose Cn is a
given failure set, in particular containing large values of X or Y , and we want to
estimate pn = P ((X,Y ) ∈ Cn) on the basis of an i.i.d. sample from F . Since we
want to apply the previous asymptotic results, the failure set must depend on the
sample size n in order to preserve the extreme nature of the problem. Then pn can
be rewritten as

pn = P

{(
1

n(1− F1(X1))
,

1

n(1− F2(Y ))

)
∈ Qn

}
where

Qn :=

{(
1

n(1− F1(x))
,

1

n(1− F2(y))

)
: (x, y) ∈ Cn

}
,

and if Qn = cnS, for some cn → ∞ and S a fixed (open) Borel set in [0,∞)2 with
infx,y∈S max(x, y) > 0 and ν(∂S) = 0, from (3) and (4),

pn ≈
ν(cnS)

n
=
ν(S)

cnn
, as n→∞.

This motivates p̂n = ν̂(Ŝ)/(ncn). The proposal is then to use the empirical measure
to estimate ν. While the set Qn might not contain any observation, likewise the set
Cn, the set S must contain enough observations which is possible via the sequence
cn. For the estimation of S one must deal with the estimation of the marginal d.f.’s.

The consistency of such an estimator, under appropriate additional conditions,
was obtained in Ferreira, de Haan and Lin (2005) [14], and an application can be
found in Ferreira and de Haan (2005) [13].

3. Extremes in C[0, 1]

Let X be a random function in C[0, 1] with continuous marginal d.f.’s Fs(x) :=
P{X(s) ≤ x}, for each s ∈ [0, 1]. Suppose the process (1) converges in distribution
to some limit process on C[0, 1], with non-degenerate marginals. Then the exponent
measure can be obtained from the limit

ν(A) := lim
n→∞

nP

({
1

n {1− Fs(Xi(s))}

}
s∈[0,1]

∈ A

)
for every Borel set A ⊂ {f ∈ C[0, 1] : f ≥ 0} such that inf{sups∈[0,1] |f(s)| : f ∈
A} > 0 and ν(∂A) = 0. Note the similarity with the multivariate situation and, in
particular, the same homogeneity property holds: ν(cA) = c−1ν(A), ∀c > 0, where
the set cA is obtained by multiplying all elements of A by c.

Let us now apply the results to estimate pn := P {X(s) > fn(s) for some
s ∈ [0, 1]}, on the basis of an i.i.d. sample and where fn is a deterministic function
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on C[0, 1] possibly well far away from the observations. Similarly as before rewrite
pn as

P

(
1

n {1− Fs(X(s))}
>

1

n {1− Fs(fn(s))}
for some s ∈ [0, 1]

)
and if n−1 {1− Fs(fn(s))}−1 = cnh(s), for some cn →∞,

pn ≈
ν{g : g(s) > cnh(s) for some s ∈ [0, 1]}

n
=
ν{g : g(s) > h(s) for some s ∈ [0, 1]}

ncn
.

Consequently the construction of the estimator is quite similar to the previous case.
The consistency of such an estimator, under appropriate additional conditions,

was obtained in Ferreira, de Haan and Lin (2005) [14].



EXTREMES OF INTEGER-VALUED MOVING
AVERAGE PROCESSES

Andreia Hall
M. G. Scotto

and

P. Cruz
Departamento de Matemática, Universidade de Aveiro

Portugal

This paper aims to analyze the extremal properties of integer-valued moving av-
erage sequences obtained as discrete analogues of conventional moving averages re-
placing scalar multiplication by binomial thinning. In particular, we consider the
case in which the scalar coefficients are replaced by random coefficients, since in real
applications the thinning probabilities may depend on several factors changing in
time. Furthermore, the extremal behavior of periodic integer-valued moving average
sequences is also considered. For these models, we find an unexpected phenomenon:
when assessing their extremal properties, the extremal index seems not to be the
object to look at.

17
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ISSUES REGARDING EXTREME VALUE THEORY
IN ENVIRONMENTAL AND NAVAL APPLICATION

Ross Leadbetter
Dept. Statistics and Operations Research

University of North Carolina, Chapel Hill, USA

Introduction and generalities

When faced with modeling of high values it is natural that one thinks first of Extreme
Value Theory (EV T ). Here we focus on the possible need for caution in its application,
and the suggestion of modified methods where needed. Specifically our discussion will
hinge on what might be loosely described as the “coordination of period and level”
which is implicit in the theory. We offer three examples from personal involvement —
two from naval architecture, where there are mismatches between period and level and
EV T does not provide the most appropriate means for describing the large values of
concern. The third case concerns environmental regulation, where extremal theory fits
but the resulting data does not satisfactorily support compliance decisions. In all cases
we find at least partial remedies at hand via “Broad sense EVT”, defined to include
related areas of Central Limit Theory, level crossing problems, Palm distributions for
Gaussian models, and exact modeling of probabilities of surrogate rare events.

The “Usual, Customary and Reasonable”4 use of EV T concerns the distribution
of the maximum of n iid random variables with df F , emanating from the almost
trivial result:

“Theorimo” 1. For a sequence of levels {un}, P {Mn ≤ un} converges to a limit
ρ = e−τ iff n(1− F (un))→ τ .

The particular case un = a−1
n x + bn for suitable sequences an > 0, bn ∈ R, leads

to the customary distributional limit

P {an (Mn − bn ≤ x)} −→ G(x), (1)

4As with physicians’ charges

19
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for a df G of extreme value type.

A common situation occurs when one wishes to estimate P {Mn ≤ c} for a fixed
(high or critical) “level” c determined by an application at hand for large values
of a “period” n. For example c may be dike height in classic Dutch dike design,
n the time period of concern (perhaps several hundred years), and it may be quite
reasonable to match c with un = a−1

n x+ bn via (1). In the environmental case c may
be a critical safe level for human health of a hazardous pollutant, and critical levels
of stress or roll in the naval applications considered.

Two of the three cases to be considered have various “mismatch features”. For ex-
ample the levels involved may be moderately high (certainly so by physical standards)
but may not be “extreme” in the sense needed for direct extremal theory application.
Or equivalently the levels may be “extreme” by physical standards, but the time pe-
riod too short to apply (1) or the Theorimo. For the third (environmental) case EV T
fits well but its limited data use causes problems of statistical inference. We discuss
these in the light of the alternative approaches suggested above.

Case 1: Capsize prediction of vessels in high seas.

Capsize potential has always been a factor in the compromises involved in the design
of ships, particularly in terms of other factors such as speed and maneuverability of
naval vessels. Many different capsize modes are possible and may be individually or
collectively present at any one time. Perhaps the most immediately obvious is that
of heavy rolling, the modeling of which has been the focus of numerous joint US-
Canada naval studies, emphasizing the fitting of Type 1 extreme value distributions
to maximum roll in tank or simulated runs under specified conditions for the ocean
and vessel.

It is our conclusion that these studies employ time periods which may be too short for
convincing application of EV T , and the use of the specific double exponential form
has no obvious intuitive advantage over other parametric fits. One may also debate
the logic of the use of Type 1 fits for situations with bounded variables (roll angles).
This does not suggest that it is fruitless to apply EV T to describe excessive roll, but
at least substantially more extensive studies appear to be desirable.

On the other hand this may also provide a useful venue for consideration of lower
levels, and surrogates for maximum capsize angle, presumably amenable to analysis
using CLT rather than EV T methods, and having friendlier statistical properties.
Yet another general approach based more on physical considerations, is to attempt
to identify characteristics of wave trains which lead to capsize and evaluate their
probabilities theoretically for specific ocean spectra. Such an approach suggested in
simple form by deKat has been developed and used especially for capsize threats in
following seas the calculation of the relevant wave statistics being now significantly
enhanced by the development and use by I. Rychlik of the “WAFO” program library
of Lund University.
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Case 2: Structural safety of vessels in stormy (hurricane) conditions.

The structural integrity of a vessel can be threatened in a multitude of ways by adverse
sea conditions and especially storms, as popularly evidenced in “The Perfect Storm”.
Two special types of threat have received special attention — the first being stress
caused by the bending of a vessel as it is subjected to buoyancy changes along its
length from wave motion (“wave induced” (WI) stress). This is a low frequency effect
substantially mimicking the wave motion. The other threat is a so-called “whipping”
stress which causes high frequency vibrations in the hull when the bow of the ship
emerges from a rough ocean, and crashes (“slams”) back down impacting the ocean
surface.

Using a Gaussian field model for the ocean surface and a model of Ochi for the stress
at a slam as proportional to the square of (vertical) reentry speed, one may obtain
the relevant (“Palm”) distributions for the two stresses and their sum, the “total
stress” at a slam instant. It is a standard exercise to show that the resulting extreme
value distribution for the maximum stress in a long period is exponential — totally
corresponding to the whipping component alone. While this is a very pleasant and
simple finding, it illustrates the inadequacy of blind reliance on EV T methods, though
correctly computed. In practice in this case the time required for the “acquisition” of
the exponential limit is so long that destruction of the hull would occur much earlier
from the WI stresses.

In this case the problem may be solved by returning to a “pre-EVT limit” frame-
work. Since the distribution of total stress at slams is known, and it is a reasonable
assumption that their occurrence is Poisson, the probability that the maximum stress
at slams should not exceed a level c is readily calculated. Since it is observed that
invariably the maximum stress in a period is at (the largest) slam, the distribution of
maximum stress is thus obtained. Such calculations have been done for typical ship
parameters, operating under hurricane conditions, giving excellent agreement with
actual tank model test data.

Case 3: EVT vs CLT in Environmental Assessment.

A variety of lessons may be learned from the earlier US regulation of ground-level
(“tropospheric”) ozone which was solidly based on EV T considerations. In conformity
with this the level exceedances were reasonably assumed to be Poisson, and a standard
of no more than 1 per year on average established as a criterion for compliance. This
“ExEx” criterion appeared to be well suited for its purpose of evaluating occurrence
of high levels of ozone. In particular there was no mismatch of the extreme level and
the period considered. However a problem of testing conformity became very much in
evidence. An area was declared to be “in compliance” with the criterion if there were
no more than 3 exceedances in a 3 year period. But the small exceedance numbers
near compliance resulted in oscillations of areas in and out of compliance.

This behavior reflects the poor “power” properties of the compliance determination
procedure, regarded as a statistical test, not because of inappropriate formulation but
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from woefully inadequate data — consisting essentially of just the few highest values.
A sensible remedy is clear — to rephrase the regulation to count exceedances of a
lower level, and of course allow more of them for compliance. This means in particular
that the test statistic (number of exceedances) may not be Poisson any more but for
a judiciously chosen lower level can be normal, leading to significant advantage in its
application. That is the use of CLT in lieu of our perhaps more favourite EV T seemed
to be the logical procedure. In fact the regulating agency (USEPA) did appear to
appreciate the technical issues favoring such a CLT procedure, but adopted a quite
different complex regulation which is more “ad hoc” in its approach.



BIAS-CORRECTED HILL ESTIMATOR UNDER A
THIRD ORDER FRAMEWORK5

Frederico Caeiro M. Ivette Gomes and D. Pestana
CMA, UNL CEAUL and DEIO, FCUL

Universidade Nova de Lisboa, Portugal Universidade de Lisboa, Portugal

Abstract: In this paper we are interested in an adequate estimation of the dominant

component of the bias of Hill’s estimator of a positive tail index γ, in order to remove it

from the classical Hill estimator in different asymptotically equivalent ways. The asymptotic

distributional properties of the proposed estimators of γ are derived and the estimators are

compared not only asymptotically, but also for finite samples through Monte Carlo techniques.

1. Introduction

In the field of Extremes, we usually say that a model F is heavy-tailed whenever the
tail function is regularly varying, with a negative index of regular variation equal to
{−1/γ}, γ > 0, or equivalently, the quantile function U(t) = F←(1− 1/t), t > 1, with
F←(x) = inf{y : F (y) ≥ x}, is of regular variation with index γ. This means that,

1− F (x) ∈ RV−1/γ ⇐⇒ U(t) ∈ RVγ , (1)

with the usual notation RVα for the class of regularly functions with index of regular
variation α. The second order parameter ρ (≤ 0), rules the rate of convergence in the
first order condition (1), and is the non-positive parameter appearing in the limiting
relation

lim
t−→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=
xρ − 1

ρ
(2)

which we assume to hold for all x > 0 and where |A(t)| ∈ RVρ (Geluk and de Haan,
1987). We shall assume everywhere that ρ < 0.

To obtain information on the distributional behaviour of second order parameters’
estimators, we shall further assume that the rate of convergence in (2) is ruled by a

5Partially supported by FCT/POCTI and POCI/FEDER.
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function B(t) such that B(t) is also of regular variation with the same index ρ, i.e.,
we assume that for all x > 0,

lim
t−→∞

lnU(tx)−lnU(t)−γ lnx
A(t) − xρ−1

ρ

B(t)
=
x2ρ − 1

2ρ
. (3)

We shall indeed assume that we are in a large sub-classe of Hall’s class of models
(Hall, 1982; Hall and Welsh, 1985), with tail function

1− F (x) = Cx−1/γ
(

1 +D1x
ρ/γ +D2x

2ρ/γ + o(x2ρ/γ)
)
, as x −→∞. (4)

Consequently, we may choose A(t) = γβtρ, B(t) = β′tρ, β 6= β′, ρ < 0.
For k intermediate, i.e., a sequence of integer values such that

k = kn −→∞, kn = o(n), as n −→∞, (5)

and under the third order framework in (3), Hill’s estimator (Hill, 1975), H(k), has
the following asymptotic distributional representation,

H(k)
d
= γ +

γ√
k
Z

(1)
k +

A(n/k)

1− ρ
+
A(n/k)B(n/k)

1− 2ρ
(1 + op(1)), (6)

where Z
(1)
k is an asymptotically standard normal r.v.

The dominant component of the bias of Hill’s estimator, given by A(n/k)/(1−ρ) =
γ β(n/k)ρ, is estimated throughH(k)β̂(n/k)ρ̂/(1−ρ̂) and directly removed fromH(k),
through two asymptotically equivalent expressions,

H(k) ≡ H
β̂,ρ̂

(k) := H(k)
(

1− β̂
1−ρ̂

(
n
k

)ρ̂)
, (7)

and
H(k) ≡ H

β̂,ρ̂
(k) := H(k) exp

(
− β̂

1−ρ̂
(
n
k

)ρ̂)
, (8)

where β̂ and ρ̂ are adequate estimators of the second order parameter β and ρ, respec-
tively, that will be estimated externally. Such a decision is related to the discussion in
Gomes and Martins (2002) on the advantages of an external estimation of the second
order parameter ρ, versus an internal estimation at the same level k.

We shall consider here particular members of the class of estimators of the sec-
ond order parameter ρ proposed in Fraga Alves et al. (2003). We have considered
the estimator of β obtained in Gomes and Martins (2002). Under adequate general
conditions, any of these estimators is consistent and asymptotically normal.

Remark 1. To estimate the second order parameters, we shall work with the level

k1 =
[
n0.995

]
. (9)

If ρ > −49.75 then ρ̂(k1) − ρ = Op
(
n0.005ρ

)
, and consequently, for any intermedi-

ate level k, (ρ̂(k1) − ρ) ln(n/k) = op(1), and
√
k A(n/k)(ρ̂(k1) − ρ) ln(n/k) = op(1)

whenever
√
k A(n/k) −→ λ, finite. We also know that β̂(k)−β ∼ −β ln(n/k)(ρ̂−ρ).
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2. Asymptotic behaviour of the estimators

Since both estimators have similar asymptotically properties we will only show results
for H(k).

Theorem 1. Under the third order framework in (3), further assuming that A(t) =
γ β tρ, and for levels k intermediate, we get,

Hβ,ρ(k)
d
= γ +

γ√
k
Z

(1)
k +A(n/k)

(
B(n/k)

1− 2ρ
− A(n/k)

γ(1− ρ)2

)
(1 + op(1)), (10)

where Z
(1)
k is an asymptotically standard normal r.v. Consequently,

√
k
(
Hβ,ρ(k)− γ

)
is asymptotically normal with variance equal to γ2, and with a null mean value not
only when

√
kA(n/k) −→ 0, but also when

√
k A(n/k) −→ λ and

√
k A2(n/k) −→ 0.

If
√
k A2(n/k) −→ λA and

√
k A(n/k)B(n/k) −→ λB, then we have a asymptotic

mean value equal to λB/(1− 2ρ)− λA/(γ(1− ρ)2).

Theorem 2. Under the conditions of the previous Theorem, let us consider that
ρ̂ − ρ = op(1/ lnn). Then H(k) is consistent for γ, but we can only assure that√
k
(
H(k)− γ

)
is asymptotically normal with variance equal to γ2 and null mean

value if
√
k A(n/k) −→ λ, finite. We may still go to levels k:

√
k A(n/k)→∞, pro-

vided we compute ρ̂ at k01, optimal for the ρ-estimation, and k = o(k01), as n→∞,
or if ρ̂ is a consistent estimator of ρ, such that (ρ̂− ρ) lnn = op(1/

√
k A(n/k)).

3. Finite sample behavior of the estimators

We have here implemented multi-sample simulation experiments of size 10,000 =
1,000(runs) × 10(replicates), in order to obtain, for the Fréchet and Burr models,
the distributional behaviour of the the Hill estimator and the new estimators H(k)

and H(k) in (7) and (8), respectively. We have simulated the mean value, E, the
mean squared error, MSE, the optimal simulated level, k•0 := arg min

k
MSE[•] and

the relative efficiency, defined as Reffγ̂ =

√
MSE[γ̂(kγ̂0 )]/MSE[H(kH0 )].

Remark 2. Note that an indicator higher than one means a better performance than
the Hill estimator. Consequently, the higher these indicators are, the better the new
estimators perform, comparatively to the Hill estimator.

In Table 1 we present the Reff indicator with 95% confidence interval, based on
the t9 quantile, for the Fréchet and Burr models. In Figure 1 we picture the mean
values (left) and the mean squared error (right) of the Hill, Hβ,ρ and H estimators
for a Burr model with (γ, ρ) = (1,−1).
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Table 1: Reff indicator

n Hβ,ρ(k) H(k) Hβ,ρ(k) H(k)
Fréchet parent: γ = 1, ρ = −1

100 1.545 ± 0.029 1.176 ± 0.011 1.478 ± 0.027 1.324 ± 0.017
500 1.709 ± 0.025 1.170 ± 0.019 1.641 ± 0.020 1.295 ± 0.023

1000 1.784 ± 0.017 1.229 ± 0.011 1.700 ± 0.018 1.346 ± 0.014
5000 1.987 ± 0.026 1.453 ± 0.014 1.883 ± 0.021 1.530 ± 0.015

10000 2.072 ± 0.032 1.593 ± 0.018 1.953 ± 0.036 1.640 ± 0.018
50000 2.328 ± 0.029 2.018 ± 0.020 2.189 ± 0.031 1.850 ± 0.011

Burr parent: γ = 1, ρ = −0.5
100 2.881 ± 0.047 1.409 ± 0.016 2.075 ± 0.025 1.345 ± 0.013
500 3.382 ± 0.049 1.352 ± 0.012 2.316 ± 0.019 1.322 ± 0.011

1000 3.643 ± 0.031 1.312 ± 0.011 2.438 ± 0.023 1.290 ± 0.012
5000 4.190 ± 0.060 1.234 ± 0.006 2.745 ± 0.039 1.225 ± 0.006

10000 4.422 ± 0.076 1.215 ± 0.011 2.853 ± 0.041 1.211 ± 0.011
50000 5.109 ± 0.091 1.180 ± 0.009 3.251 ± 0.048 1.178 ± 0.009

Burr parent: γ = 1, ρ = −1
100 1.902 ± 0.031 1.885 ± 0.033 1.684 ± 0.021 1.724 ± 0.028
500 2.127 ± 0.025 2.113 ± 0.025 1.850 ± 0.022 1.928 ± 0.022

1000 2.235 ± 0.026 2.275 ± 0.024 1.936 ± 0.022 2.083 ± 0.024
5000 2.525 ± 0.046 2.734 ± 0.061 2.143 ± 0.035 2.544 ± 0.055

10000 2.633 ± 0.040 3.011 ± 0.049 2.229 ± 0.038 2.784 ± 0.048
50000 2.919 ± 0.028 3.813 ± 0.061 2.450 ± 0.039 3.500 ± 0.052

Burr parent: γ = 1, ρ = −2
100 1.425 ± 0.019 1.181 ± 0.014 1.371 ± 0.016 1.173 ± 0.014
500 1.543 ± 0.025 1.149 ± 0.007 1.471 ± 0.019 1.144 ± 0.008

1000 1.579 ± 0.018 1.137 ± 0.012 1.504 ± 0.015 1.134 ± 0.012
5000 1.703 ± 0.028 1.142 ± 0.012 1.619 ± 0.026 1.140 ± 0.012

10000 1.761 ± 0.034 1.141 ± 0.010 1.672 ± 0.026 1.139 ± 0.010
50000 1.890 ± 0.027 1.136 ± 0.012 1.794 ± 0.024 1.136 ± 0.011
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Figure 1: Underlying Burr parent with γ = 1 and ρ = −1.
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Abstract: A new estimator of the extreme value index is developed. Its very simple form is

born out of a limiting relation introduced by Laurens de Haan (1970). A striking feature of

what we call the Mixed Moment estimator is that its variance coincides with the variance of

the maximum likelihood estimator when the index is non-negative and falls off rapidly when

γ becomes negative.

Key words and phrases: estimation, max-domain of attraction, regular variation theory.

1. Introduction

Let X1, X2, . . . be independent random variables with common unknown distribution
function F . If for some constants an > 0 and bn ∈ R, we have

lim
n→∞

P
{
a−1
n

(
max(X1, . . . , Xn)− bn

)
≤ x

}
= G(x), x ∈ R (1)

for some non-degenerate function G, then F is in the domain of attraction of G and
(notation: F ∈ D(G)) and G must be the eneralized Extreme Value distribution

G(x) = Gγ(x) :=

{
exp(−(1 + γx)−1/γ) , 1 + γx > 0 if γ 6= 0
exp(− exp(−x)) , x ∈ R if γ = 0.

This distribution has three possible forms: Fréchet (γ > 0), Gumbel (γ = 0) and
Weibull (γ < 0). Hence, estimation of the extreme value index γ is an impending

6Partially supported by FCT/POCTI and POCI/FEDER.
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problem.

A necessary and sufficient condition for F ∈ D(Gγ) is the first order extended
regular variation property of U :

lim
t→∞

U(tx)− U(t)

a(t)
=

{ xγ−1
γ , γ 6= 0

log x, γ = 0,
(2)

for every x > 0 and some positive measurable function a, with U as the tail quantile
function defined by the generalized inverse

U(t) :=
( 1

1− F

)←
(t) = inf

{
x : F (x) ≥ 1− 1

t

}
.

According to Theorems 2.6.1 and 2.6.2 of (de Haan, 1970), a distribution function
F with right endpoint xF := sup{x : F (x) < 1} in (0, ∞] belongs to D(Gγ) if and
only if

lim
t↑xF

(
1− F (t)

) ∫ xF
t

∫ xF
y

(
1− F (x)

)
dx
x2
dy

t2
(∫ xF

t

(
1− F (x)

)
dx
x2

)2 = ϕ(γ) :=

{
1 + γ, γ > 0
1−γ
1−2γ , γ ≤ 0.

(3)

The left hand side of (3) can be written alternatively as(
1− F (t)

)−1
{∫∞

t log x
t dF (x)−

∫∞
t

(
1− t

x

)
dF (x)

}
{(

1− F (t)
)−1 ∫∞

t

(
1− t

x

)
dF (x)

}2 (4)

Let X1, X2, . . . be i.i.d. random variables with distribution function F and{
Xi,n

}n
i=1

their ascending n-th order statistics. We can build a statistic starting
from (4) by replacing F with its empirical counterpart Fn and t by the order statistic
Xn−k,n with k < n. The result is

ϕ̂n(k) :=
Mn,0(k)−Mn,1(k)(

Mn,1(k)
)2 , (5)

where

Mn,0(k) :=
1

k

k−1∑
i=0

log
(Xn−i,n
Xn−k,n

)
and Mn,1(k) := 1− 1

k

k−1∑
i=0

Xn−k,n
Xn−i,n

.

It is precisely the statistic (5) that is at the origin of what we call the mixed moment
estimator for the extreme value index γ ∈ R:

γ̂n(k) :=
ϕ̂n(k)− 1

1 + 2 min
(
ϕ̂n(k)− 1, 0

) . (6)
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2. Main results

Theorem 3. Suppose F has right endpoint xF = U(∞) := lim
t→∞

U(t) > 0 and satisfies

(2) for some γ ∈ R. Let k = kn be an intermediate sequence, i.e., a sequence of
positive integers kn such that kn → ∞ and kn = o(n) as n → ∞. Then, the mixed
moment estimator γ̂n(k) introduced in (6) is a consistent estimator for the tail
index γ ∈ R, i.e., the following limit in probability holds:

γ̂n(k)
P−→

n→∞
γ.

Apart from (2), we shall need a second order condition, specifying the inherent
rate of the convergence (deHaanStadtmuller, 1996; Drees, 1998). As such, assume the
existence of a function A not changing sign eventually and tending to zero as t→∞
guaranteeing that

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) =:

1

ρ

(xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
, (7)

for all x > 0, where ρ ≤ 0 is the second order parameter governing the rate of
convergence. Under these circumstances, we say that the function U is of second
order extended regular variation (notation: U ∈ 2ERV (γ, ρ)). We remark that
lim
t→∞

A(tx)/A(t) = xρ, for every x > 0.

Theorem 4. Given that U satisfies (7) with the restriction γ 6= ρ, assume U(∞) :=
lim
t→∞

U(t) > 0. Let k = kn be an intermediate sequence. Then

√
k
(
γ̂n(k)− γ

) d−→
n→∞

N(λ bias, σ2), (8)

1. if (7) holds with (0 < γ < −ρ and l 6= 0) or γ = 0 or γ = −ρ;

2. if (7) holds with (|γ| > −ρ and ρ ≤ 0) or (0 < γ < −ρ and l = 0) and k = kn
is such that

√
k A
(
n/k

)
−→
n→∞

λ ∈ R;

3. if (7) holds with ρ < γ < 0 and k = kn is such that
√
k a
(
n/k

)
−→
n→∞

λ, λ finite;

where l := lim
t→∞

(U(t)− a(t)/γ), l ∈ R for 0 < γ < −ρ, and with

σ2 = σ2(γ) :=

{
(1 + γ)2, γ ≥ 0(

1−γ
1−2γ

)2
6γ2−γ+1

(1−2γ)5(1−3γ)(1−4γ)
, γ < 0.
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Abstract: We present a family of local dependence conditions for T-periodic random fields

under which we can calculate the extremal index from the joint distribution of a finite

number s1s2 of variables.

1. Introduction

The results about limiting crossing probabilities of nonstationary random fields
(Pereira and Ferreira, 2005) can be applied to simple forms of nonstationarity like
periodic random fields. However, specific local conditions for these random fields, as
those for the stationary random fields, may give a better insight into the limiting
clustering of high values.

In this paper we consider that X = {Xn : n ∈ Nm} is a T-periodic random field
on Nm, where N is the set of all positive integers and m ≥ 2.

Definition 1. The random field X on Nm is periodic if there exist integers

Tj ≥ 1, j = 1, 2, . . . ,m, such that, for all i ∈ I1 × · · · × Im =
{
i
(1)
1 , . . . , i

(1)
n1

}
×

· · · ×
{
i
(m)
1 , . . . , i

(m)
nm

}
with 1 ≤ i

(j)
1 < · · · < i

(j)
nj , j = 1, . . . ,m, we have

(Xi, i ∈I1 × · · · × Im)
d
=

(
Xi+(T1,0,...,0), i ∈I1 × · · · × Im

)
, · · · , (Xi, i ∈I1 × · · · × Im)

d
=(

Xi+(0,0,...,Tm), i ∈I1 × · · · × Im
)
, where

d
= denotes the equality in distribution.

If Tj , j = 1, 2, . . . ,m, are the smallest integers satisfying the above definition we
say that X is a T = (T1, . . . , Tm)-periodic random field. When Tj = 1, j = 1, 2, . . . ,m,
the random field X is stationary.
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We shall consider the conditions and results for m = 2, since it is notationally
simplest.

For a family of real levels {un}n≥1 and a subset I of the rectangle of points Rn =
{1, . . . , n1}×{1, . . . , n2} , we will denote the event {Xi ≤ un, i ∈ I} by {Mn(I) ≤ un}
or simply by {Mn ≤ u} when I = Rn. For each i = 1, 2, we say the pair I and J is in
Si(l) if the distance between Πi(I) and Πi(J) is greater or equal to l, where Πi, i = 1, 2,
denote the cartesian projections. The distance between two points i = (i1, . . . , im)
and j = (j1, . . . , jm) in Nm is defined by |i− j| = max

1≤l≤m
|il − jl| and the distance

between two subsets I and J of Nm is defined by d(I,J) = inf {|i− j| : i ∈ I, j ∈ J} .

Restrictions on clustering of high values for stationary and T-periodic time se-
ries have been considered in the form of D(k)(un), k ≥ 1, conditions introduced in
Chernick et al. (1991) (see also Ferreira and Martins, 2003; Ferreira, 1994). In
Ferreira and Pereira (2005) is introduced the condition D(s)(un), s = (s1, s2)∈N2,
which is the D(k)(un) tailored for homogeneous random fields. That condition and
the coordinatewise-mixing ∆(un)−condition introduced in Leadbetter and Rootzén
(1988) enable us to compute the extremal index from the joint distribution of a finite
number s1s2 variables.

In this paper we generalize the definition of extremal index of a homogeneous
random field (Choi, 2002) to a T-periodic random field and we compute it under a
local mixing condition analogous to that considered in Ferreira and Pereira (2005).

2. Computing the extremal index

Definition 2. The T−periodic random field X has extremal index θX when,

for each τ > 0, there exists a sequence of real numbers
{
u

(τ)
n

}
n≥1

such that

n1n2
1

T1T2

∑
i≤(T1,T2) P

(
Xi > u

(τ)
n

)
−−−→
n→∞

τ and P (Mn ≤ u
(τ)
n ) −−−→

n→∞
e−θXτ with

θX independent of τ .

In the following we describe the asymptotic behavior of the partial maximum Mn,
n ≥ 1, under the coordinatewise-mixing condition ∆(un) (Leadbetter and Rootzén,
1988) and a local dependence condition that generalizes the D(s)(un) condition (Fer-
reira and Pereira, 2005). The coordinatewise-mixing ∆(un)−condition exploits the
past and future separation one coordinate at a time and is defined as follows.

Definition 3. The random field X satisfies the coordinatewise-mixing condition
∆(un) if there exist sequences of integer valued constants {kni}ni≥1 , {lni}ni≥1 ,
i = 1, 2, such that, as n = (n1, n2) −→∞, we have

(kn1 , kn2) −→∞,
(
kn1 ln1
n1

,
kn2 ln2
n2

)
−→ 0 (2.1)

and (kn1∆1, kn1kn2∆2) −→ 0, where ∆i are the components of the mixing coefficient
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defined as follows:

∆1 = sup
∣∣∣P (Mn(I1) ≤ u(1)n ,Mn(I2) ≤ u(2)n

)
− P

(
Mn(I1) ≤ u(1)n

)
P
(
Mn(I2) ≤ u(2)n

)∣∣∣ ,
where the supremum is taken over pairs I1 and I2 in S1(ln1) such that |Π1(I2)| ≤ n1

kn1
,

∆2 = sup
∣∣∣P (Mn(I1) ≤ u(1)n ,Mn(I2) ≤ u(2)n

)
− P

(
Mn(I1) ≤ u(1)n

)
P
(
Mn(I2) ≤ u(2)n

)∣∣∣ ,
where the supremum is taken over pairs of I1 and I2 in S2(ln2) such that Π1(I1) =

Π1(I2) and |Π2(I2)| ≤ n2
kn2

.

Under the ∆(un) − condition we have the asymptotic independence
for maxima over disjoint rectangles

{
(i− 1)

[
n1

kn1T1

]
T1 + 1, . . . , i

[
n1

kn1T1

]
T1
}
×{

(j − 1)
[

n2
kn2

T2

]
T2 + 1, . . . , j

[
n2

kn2
T2

]
T2
}

, i = 1, . . . , kn1 , j = 1, . . . , kn2 . For sake of

simplicity we write
[

n
kT

]
T for

([
n1

kn1
T1

]
T1,
[

n2
kn2

T2

]
T2
)
.

Proposition 1. Suppose that the T−periodic random field X verifies the
coordinatewise-mixing condition ∆(un). Then

P (Mn ≤ un)− P kn1kn2
(
M[ n

kT ]T ≤ un

)
−−−→
n→∞

0.

In the following consider R∗i,j = {i1, i1 + 1, . . . , j1} × {i2, i2 + 1, . . . , j2} − {i} . In
particular, for i = 1 we write simply R∗j .

Definition 4. The T−periodic random field X satisfies the condition D
(s)
T (un), for

some s ∈N2, if there exist sequences of integer valued constants {kni}ni≥1 , {lni}ni≥1 ,
i = 1, 2, verifying (2.1) and

n1n2
1

T1T2

∑
i≤(T1,T2)

∑
j≤[ n

kT ]T

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un, Xj > un

)
−−−→
n→∞

0.

By considering s = 1 =(1, 1) and s = 2 =(2, 2) we obtain the generalization of the
local conditions considered in (Pereira and Ferreira, 2005) to T−periodic random
fields.

When T = 1 =(1, 1) we obtain the condition D(s)(un) considered in Ferreira and
Pereira (2005), for homogeneous random fields. Under D(s)(un) they compute the
extremal index of X from the distribution of the first s1s2 variables of X. We will
extend their result for periodic random fields.

Proposition 2. Let X be a T−periodic random field satisfying the conditions ∆(un)

and D
(s)
T (un) for some s ∈N2. Then

n1n2
1

T1T2

∑
i≤(T1,T2)

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un

)
−−−→
n→∞

ν > 0

if and only if P (Mn ≤ un) −−−→
n→∞

exp(−ν).
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Proof: Under the condition ∆(un) we have P (Mn ≤ un)−P kn1kn2
(
M[ n

kT ]T ≤ un

)
=

o(1) and so it is enough to prove that kn1kn2P
(
M[ n

kT ]T > un

)
= ν + o(1). Since

kn1
kn2

P
(
M[ n

kT ]T > un

)
= kn1kn2

[
n1

kn1
T1

] [
n2

kn2
T2

] ∑
i≤(T1,T2)

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un

)
−kn1

kn2

[
n1

kn1
T1

] [
n2

kn2
T2

] ∑
i≤(T1,T2)

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un,

Mn

(
R∗

i+s−1,[ n
kT ]T

)
> un

)
,

the result follows by applying the D
(s)
T (un)− condition, since

kn1
kn2

[
n1

kn1T1

] [
n2

kn2T2

] ∑
i≤(T1,T2)

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un ,

Mn

(
R∗

i+s−1,[ n
kT ]T

)
> un

)
≤ kn1kn2

[
n1

kn1
T1

] [
n2

kn2
T2

] ∑
i≤(T1,T2)

∑
j≤[ n

kT ]T
|i−j|≥max{s1,s2}

P
(
Xi > un,Mn

(
R∗i,i+s−1

)
≤ un,

Xj > un) = o(1).

2

As a consequence of this result we compute the extremal index as follows.

Corollary 1. If the T−periodic random field X satisfies the conditions ∆(u
(τ)
n ) and

D
(s)
T (u

(τ)
n ) for each τ then the extremal index of X, θ, exists if and only if there exists

ν = lim
n→∞

n1n2
1

T1T2

∑
i≤(T1,T2)

P
(
Xi > u

(τ)
n ,Mn

(
R∗i,i+s−1

)
≤ u(τ)

n

)
and in this case it holds θ = ν

τ .

Example 1. Let Y = {Yn}n≥1 be an i.i.d. random field and {un}n≥1 a sequence of
real numbers such that n1n2P (Y1 > un) −−−→

n→∞
τ.

From Y we shall define a T = (2, 3) periodic random field that satisfies D
(2,2)
T (un)

condition.
Let X = {Xn}n≥1 be such that X(i,2s+1) = Y(i,2s+1) for s ≥ 0 and i ≥ 1, X(i,2s) =

Y(i,2s) if
[
i
3

]
= 1 and X(i,2s) = max

{
Y(i,2s), Y(i,2s−1)

}
if
[
i
3

]
∈ {2, 3} .

Since Xi and Xj are independent if |i− j| > 1 the condition D
(2,2)
T (un) can be easily

verified and the extremal index is θ = 7
9 .
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Abstract: The main objective of statistics of extremes is the estimation of parameters

of rare events. Most of statistical procedures deal with the i.i.d. setup, but in practical

situations the assumption of independence is not realistic. Under adequate weak dependence

conditions, the classical limiting results hold true and we get the same max-stable limit for

the suitable linear normalization. It appears now a parameter, the so-called extremal index

that is a quantity which, in an intuitive way, allows one to characterize the relationship

between the dependence structure of the data and the behaviour of the exceedances over a

high threshold un. This is a relevant parameter for any inferential procedure. Let us consider

a stationary sequence {Xn}n≥1, with marginal distribution function F . Under general local

and asymptotic dependence conditions, there exists the extremal index θ, 0 ≤ θ ≤ 1. For a

max-autoregressive process of order one and for a random repetition model, the conditions

for the existence of extremal index are revisited and some classical estimators are compared,

via simulation, to another estimator obtained averaging the estimators calculated over

different high levels.

Key words and phrases: Estimators, extremal index, simulation, dependence conditions

1. Introduction

Let {Xn}n≥1 be a stationary sequence with marginal distribution function F and
Mn = max(Xi : i = 1, · · · , n). Let {an > 0} and {bn} be sequences of constants such
that as n→∞, P {(Mn − bn) /an ≤ x} converges in distribution to a non-degenerate
distribution function G. Suppose that a distributional mixing condition D(un) is
satisfied for un = anx + bn, for each real x. Then G is a member of the generalized
extreme value family of distributions (Leadbetter, 1974, and Leadbetter et al., 1983).

7Research partially supported by FCT/POCI/MAT/58876 and CMA/FCT/FEDER.
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The condition D(un) alone is sufficient to guarantee that the central classical result
concerning the possible extremal types, holds also to stationary sequences.

Choosing thresholds un = un(τ) such that n F (un)→ τ for some τ > 0, Chernick
(1981) shows that, under D(un) condition, any limit (function) for P [Mn ≤ un(τ)]
must be of the form

P [Mn ≤ un(τ)]→ exp{−θτ} (1)

for some θ with 0 ≤ θ ≤ 1, called the extremal index of the sequence {Xn}.
Leadbetter (1983) shows that if {Xn} has a non-zero extremal index θ, then any

limiting distribution for the maximum must be of the same type as if the terms were
i.i.d. with the same normalizing constants if θ = 1, and simply modified constants
for 0 < θ < 1.

Let M∗n = max(X∗i : i = 1, · · · , n), where {X∗i }n≥1 are the associated independent
sequence with the same d.f. F as each of the stationary sequence. If there exists
sequences of constants {an > 0} and {bn} and a non-degenerate distribution function
G1 such that P [(M∗n − bn)/an ≤ x]→ G1(x), then if D(un) holds with un = anx+ bn
for each x such that G1(x) > 0 and if P [(Mn − bn)/an ≤ x] converges for some x,
then Leadbetter (1983) shows that

P [(Mn − bn)/an ≤ x]→ G2(x) := G1(x)θ, as n→∞, (2)

for θ ∈ [0, 1].

2. Dependence conditions and extremal index estimation

Extensions of classical extreme value theory to stationary sequences generally make
use of two types of dependence restriction: a weak mixing condition restricting long
range dependence, the distributional mixing condition D(un) (Leadbetter, 1974) and
a local condition restricting the clustering of high level exceedances, the condition
D′(un) (Leadbetter, 1974). The first type, weaker than the usual forms of dependence
restrictions such as strong mixing (Rosenblat, 1956) is the basic assumption in the
development of the theory.

Strong mixing implies D(un) for any sequence {un}. In contrast to the D(un)
condition, the D′(un) condition limits the amount of short-range dependence in the
process at extreme values, see Leadbetter (1974).

The conditions D(un) and D′(un) ensure that the extremes of the stationary
sequences {Xn} have the same qualitative behaviour as the extremes of an associated
i.i.d. sequence. The main problem is to verify conditions D(un) and D′(un). We
will study the behaviour of two different stationary processes. These processes are
substantially concerned with cases where the index θ is less than one. The case θ = 0
is pathological, although not impossible, see Denzel and O’Brien (1975) or Leadbtter
et.al. (1983). If θ = 1 the exceedances of an increasing threshold occur singly in the
limit, if θ < 1 the exceedances tend to cluster in the limit.
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Let us then consider the models:

I - Random repetition model

O’ Brien (1974) considers the following model: Let {Yi} and {Ji} be independent
sequences of i.i.d. r.v.’s, with

P (Yi ≤ x) = F (x) and P (Ji = 1) = θ = 1− P (Ji = 0)

where F is the standard exponential distribution and θ ∈ (0, 1]. The stationary
sequence {Xn} is defined as follows:

X1 = Y1 and Xi = JiYi + (1− Ji)Xi−1, for i ≥ 2. (3)

It is easy to check that the marginal d.f. of {Xn} is F .

O’Brien (1974) shows that the sequence {Xn} is strong mixing which implies that
D(un) holds. For this process we have

P [Mn − lnn ≤ x]→ exp{−θ exp{−x}} =: G2(x) = G1(x)θ as n→∞,

and G1(x) = exp{− exp{−x}}; so the extremal index is θ. When θ = 1, the random
repetition model is independent and the D′(un) condition holds. On the other hand,
after some calculations and for θ < 1, we haven n∑

j=2

P{X1 > un, Xj > un}

 = n(n− 1) (1− F (uu))2 (1− (1− θ)n),

which does not tend to zero as n→∞ when un = x+ lnn, i.e., the condition D′(un)
is not satisfied.

II - Max-autoregressive process (ARMAX)

de Haan and Ferreira (2006) give the following process: Let {Zi}i≥1 be indepen-
dent standard Fréchet random variables and β ∈ [0, 1). The process {Xi} is defined
by,

X1 = Z1 and Xi = max{βXi−1, (1− β)Zi}, for i ≥ 2. (4)

Then {Xn} is a stationary sequence with marginal standard Fréchet distribution. A
stationary solution of the recursion is

Xi = max
j≥0
{βj(1− β)Zi−j}, for i ≥ 1.

showing that the ARMAX process is a special case of the moving-maximum process.
The moving maximum process satisfies the standard distributional mixing condition
D(un), see Hall et al. (2002).

For 0 < x <∞,

P [Mn/n ≤ x]→ exp{−(1− β)/x} =: G2(x) = G1(x)1−β as n→∞,
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and G1(x) = exp{−1/x}, which shows that the extremal index of the ARMAX process
is θ = 1 − β with 0 < θ ≤ 1. When β = 0, the ARMAX process is independent and
the D′(un) condition holds. On the other hand, D′(un) fails if β > 0 when un = nx
and x > 0.

In this work we compare some classical estimators of the extremal index with
an estimator defined as the average of a given number of estimators calculated for
different high thresholds. This study is carried out by simulation.
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Abstract: We shall here deal with bias reduction techniques for heavy tails, trying to

improve the performance of classical tail index estimators. Recently, new interesting classes

of reduced bias’ γ-estimators have been introduced in the literature. In those classes, the

second order parameters in the bias are estimated at a level k1 of a larger order than that

of the level k at which we compute the tail index estimators. Doing this, it is possible to

keep the asymptotic variance of the new estimators equal to the asymptotic variance of the

Hill estimator. We now introduce a similar class of γ-estimators. Asymptotic and finite

sample distributional properties of those estimators are obtained. An illustration of the

behaviour of the new estimators, for a set of real data in the field of insurance, is also provided.

1. Introduction.

Heavy-tailed models have revealed to be quite useful in the most diversified areas,
ranging from insurance, economics and finance till telecommunications and biostatis-
tics. In a context of Extreme Value Theory, a model F is said to have a heavy
right tail whenever the tail function F := 1 − F ∈ RV−1/γ , where RVα stands for
the class of regularly varying functions with index α, i.e., positive measurable func-
tions g such that limt→∞ g(tx)/g(t) = xα, for all x > 0. Equivalently, denoting
U(t) := F←(1− 1/t) = inf {x : F (x) ≥ 1− 1/t} , we have U ∈ RVγ .

8Partially supported by FCT/POCTI and POCI/FEDER.
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We are going to base inference on the k top order statistics (o.s.), and as usual
in semi-parametric estimation of parameters of extreme or even rare events, we shall
assume that k is an intermediate sequence of integers, i.e., k = kn → ∞, k =
o(n), as n→∞. For heavy tails, the classical tail index estimator is the Hill estimator
γ̂ = γ̂(k) ≡ H(k) (Hill, 1975).

Second order refinements. In order to derive the asymptotic non-degenerate
behaviour of semi-parametric estimators of extreme events’ parameters, we need
more than the first order condition. A convenient condition is the following second
order condition, which guarantees that limt→∞ (lnU(tx)− lnU(t)− γ lnx) /A(t) =
(xρ − 1) /ρ for all x > 0, being ρ ≤ 0 a second order parameter. The previous limit
function is necessarily of this given form, and |A| ∈ RVρ (Geluk and de Haan, 1987).
We shall assume to be working in a wide sub-class of Hall’s class of models (Hall
and Welsh, 1985), where there exist γ > 0, ρ < 0, C > 0 and β, β′ 6= 0 such that
U(t) = Ctγ

(
1 + γ β tρ/ρ+ β′t2ρ + o(t2ρ)

)
, as t → ∞. Typical heavy-tailed models,

like the Fréchet(γ), the Generalized Pareto and the Student-tν model belong to such
a class. Then, this second order condition holds, with A(t) = γ β tρ, ρ < 0.

Under the second order framework, and for intermediate k, we may guarantee
the asymptotic normality of the Hill estimator H(k), for an adequate k. Indeed,

we may write (de Haan and Peng, 1998), H(k) :=
∑k

i=1 Ui/k
d
= γ + γ Pk/

√
k +

A(n/k)(1 + op(1))/(1 − ρ), Pk asymptotically standard normal. Consequently, if we
choose a level k such that

√
k A(n/k) → λ 6= 0, finite, as n → ∞,

√
k (H(k)− γ) is

asymptotically normal, with a non-null bias given by λ/(1− ρ) and a variance equal
to γ2. Most of the times, this type of estimates exhibit a strong bias for moderate k
and sample paths with very short stability regions around the target value γ. This
problem has been recently addressed by several authors, among whom we mention
Peng (1988), Beirlant et al. (1999), Feuerverger and Hall (1999) and Gomes et al.
(2000). All these researchers consider the possibility of dealing with the bias term in
an appropriate way, building different new estimators, γ̂R(k) say, the so-called second
order reduced bias’ estimators. Then, for k intermediate, and under the second
order framework, we may write, with P

R

k an asymptotically standard normal r.v.,

γ̂R(k)
d
= γ+ σR P

R

k /
√
k+ op(A(n/k)), where σR > 0. Consequently,

√
k (γ̂R(k)− γ)

is asymptotically normal with a null mean value even when
√
k A(n/k) → λ, finite

and possibly non-null, as n→∞. Indeed, under mild additional conditions, we may
even guarantee the asymptotic normality of these estimators for levels k such that√
k A(n/k)→∞, as n→∞ (see, for instance, Gomes et al., 2004a).

Among the above mentioned classes of second order reduced bias tail index esti-
mators, the class of “maximum likelihood” estimators in Gomes and Martins (2002)
will be the one we consider and introduce in section 2, together with two possible
alternatives, studied in or suggested by recent papers on reduced bias’ tail index esti-
mation (Gomes et al., 2004b; Caeiro et al., 2004; Gomes and Pestana, 2004; Gomes et
al., 2005). In section 3, we provide an illustration of the behaviour of these estimators
for a set of real data in the field of insurance, the automobile claims from an European
car insurance portfolio.
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2. Second order reduced bias’ tail index estimation

Among the “asymptotically unbiased” or second order reduced bias’ tail index esti-
mators with the minimal asymptotic variance in Drees class of functionals (Drees,
1998), we shall select here the “maximum likelihood” estimator introduced in Gomes
and Martins (2002), with the functional expression M(k; ρ̂) := D0(k)−Dρ̂(k)×Tρ̂(k),
with Tρ̂(k) := (dρ̂(k) ×D0(k) −Dρ̂(k))/(dρ̂(k) ×Dρ̂(k) −D2ρ̂(k)), where, for α ≤ 0,

dα(k) :=
∑k

i=1(i/k)−α/k, Dα(k) :=
∑k

i=1(i/k)−α Ui/k. Note that D0(k) is the Hill

estimator H(k) :=
∑k

i=1 Ui/k. This estimator depends thus on the estimation of the
second order parameter ρ, and we suggest the use of the class of estimators in Fraga
Alves et al. (2003).

Remark 3. An estimator of this same type, but implicit, was first introduced in
Beirlant et al. (1999) and Feuerverger and Hall (1999), and has been studied, with a
misspecification of ρ at ρ = −1, in Gomes and Martins (2004).

Estimation of second order parameters. We shall denote generically ρ̂τ any
of the estimators ρ̂τ (k) introduced in Fraga Alves al. (2003), computed at the level
k1 = [n0.995]. For the estimation of β, we shall consider the β-estimator, β̂(k; ρ̂) :=
(k/n)ρ̂Tρ̂(k), provided in Gomes and Martins (2002). We use the simple notation β̂τ
to denote β̂(k1; ρ̂(k1; τ)). We use a subscript j, writing ρ̂j and β̂j = β̂ρ̂j when we want
to specify that τ ≡ j, j = 0 or 1.

Remark 4. For models in Hall’s class, when we consider β̂ ≡ β̂(k1; ρ̂), with ρ̂ any
of the above mentioned estimators, computed also at the same level k1, we get, under
mild restrictions, ρ̂− ρ = op(1/ lnn). {β̂ − β} is also of smaller order than 1/ lnn.

Alternative tail index estimators. The estimator M(k; ρ̂) attains the
minimal asymptotic variance in Drees’ class of functionals (Drees, 1998), given
by (γ(1− ρ)/ρ)2. Notice now that we may write, M(k; ρ̂) := D0(k) −
β̂(k; ρ̂) (n/k))ρ̂Dρ̂(k). In a spirit similar to the one in Gomes et al. (2004b)
and Caeiro et al. (2005), Gomes et al. (2005) have considered, for a suitable ρ-
estimator, ρ̂, the β-estimator, β̂(k; ρ̂), but computed at an intermediate higher
level k1, like the one mentioned before. The estimate β̂ := β̂(k1; ρ̂) is then incor-
porated in M(k; ρ̂), and it is there suggested the consideration of the estimator,
M(k; β̂, ρ̂) := D0(k)− β̂ (n/k))ρ̂ Dρ̂(k). Note that M(k; ρ̂) = M (k; β̂(k; ρ̂), ρ̂).

Here, apart from M(k; β̂, ρ̂), we shall also consider, now in a spirit similar to
the one used in Gomes and Pestana (2004), the computation of Dρ̂(k), a consistent
estimator of γ/(1−ρ), at its estimated optimal level. Indeed, from Gomes and Martins
(2004), we know that, if the second order condition holds, if k = kn is a sequence of
intermediate positive integers, then the asymptotic optimal level for Dρ(k) is provided

by k(D)

0 (n) =
(
(1− 2 ρ) n−2 ρ/(−2 ρ β2)

)1/(1−2 ρ)
. With the obvious notation k̂(D)

0 ,

we thus define M(k; β̂, ρ̂) := D0(k)− β̂ (n/k))ρ̂ Dρ̂(k̂
(D)

0 ), again with ρ, ρ̂ = ρ̂(k1; τ),

and β̂ := β̂(k1; ρ̂). We may state:
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Proposition 3. If the second order condition holds, if k = kn is a se-
quence of intermediate positive integers, and if

√
k A(n/k)→ λ, finite and

non necessarily null, as n → ∞, then, with M̃ denoting either M or M ,√
k
(
M̃β,ρ(k)− γ

)
−→d

n→∞ Normal
(
0, γ2

)
. This same limiting behaviour holds

true if we replace M̃β, ρ by M̃β̂, ρ̂, provided that (ρ̂− ρ) lnn = op(1) for every k-value

on which we base the tail index estimation, and we choose β̂ := β̂(k1; ρ̂).

A case-study. We shall consider an illustration of the performance of the above
mentioned estimators, through the analysis of automobile claim amounts exceeding
1,200.000 Euro over the period 1988-2001 and gathered from several European insur-
ance companies co-operating with the same re-insurer (Secura Belgian Re). This data
set was studied both in Beirlant et al. (2004) and Vandewalle and Beirlant (2005). In
Figure 2, working with the n = 371 automobile claims exceeding 1,200.000 Euro, we
present the sample path of the ρ̂τ (left), β̂τ ≡ β̂ρ̂τ (center) estimators, as function of
k, for τ = 0 and τ = 1, together with the sample paths of estimates of the tail index

γ, provided by the Hill estimator, H, the M -estimator and the M estimator (right).
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Figure 2: Estimates of the tail index γ (left) and of the quantile χp, associated to p = 0.001 (right) for the
Secura Belgian Re data.

Remark 5. Note that the sample paths of the ρ-estimates associated to τ = 0 and
τ = 1 lead us to choose, on the basis of any stability criterion for large k, the estimate
associated to τ = 0. From previous experience with this type of estimates, we conclude
that the underlying ρ-value is larger than or equal to −1, and the consideration of
τ = 0 is then advisable. The estimate of ρ is in this case ρ̂0 = −0.65, obtained at the
level k1 = 360. The associated β-estimator is β̂0 = 0.78.

Remark 6. The relative behaviour of the sample paths of M and M estima-
tors immediately suggest a possible choice of the threshold, provided by k01 :=

max
{
k : M(k)−M(k) ≤ εcrit

}
. Such a choice led to γ̂ = 0.23.
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Abstract: In many areas of application, like statistical quality control, insurance and

finance, a typical requirement is to estimate a high quantile, i.e., the Value at Risk at

a level p (VaRp), high enough, so that the chance of an exceedance of that value is

equal to p, small. In this paper we provide an empirical data analysis of log-returns

associated to five sets of financial data, collected over the same period, through the

use of reduced bias tail index and associated high quantile estimators. These tail index

estimators depend on two second order parameters, and in order to achieve a reduction

in bias without any inflation of the asymptotic variance, the second order parameters in

the bias are both estimated at a higher level than that used for the estimation of the tail index.

1. Introduction and preliminaries

An important situation in risk management is the risk of a big loss that occurs very
rarely. The risk is generally expressed as the Value at Risk (VaRp), that is, the size
of the loss occurred with fixed small probability p. In other words, we are dealing
with a high quantile χ1−p := F←(1−p) of a probability distribution function (d.f.) F ,
with F←(y) = inf{x : F (x) ≥ y}, the generalized inverse function of F . Let us denote
U(t) the inverse function of 1/(1 − F ). Then, for small p, we want to estimate the
parameter VaRp = U(1/p), p = pn → 0, n pn ≤ 1. Since in financial applications one
encounters generally heavy tails, we shall assume that the d.f. underlying the data
satisfies 1− F (x) ∼ c x−1/γ , as x→∞, for some c > 0.

For the semi-parametric estimation of a high quantile (i.e., the Value-at-Risk),

Weissman (1978) proposed the statistic Q
(p)
γ̂ (k) := Xn−k+1:n(k/(np))γ̂ , where

Xn−k+1:n is the k-th top order statistic (o.s.), γ̂ any consistent estimator for γ and
Q stands for quantile function. As usual in semi-parametric estimation of parameters
of extreme events, we need that k = kn → ∞, k ∈ [1, n), k = o(n), as n → ∞. We
then say that k is an intermediate sequence of integers. For heavy tails, the classical

9Partially supported by FCT / POCTI / FEDER.
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tail index estimator, usually the one which is used for a semi-parametric quantile
estimation, is the Hill estimator γ̂ = γ̂(k) =: H(k) (Hill, 1975), with the functional
expression, H(k) := 1

k

∑k
i=1 Ui, Ui := i(lnXn−i+1:n − lnXn−i:n), 1 ≤ i ≤ k.

Since Q(p)
H

(k) is skewed (Gomes and Pestana, 2005), we shall here work with

the ln-VaR estimator, lnQ
(p)
γ̂ (k) := lnXn−k+1:n + γ̂(k) ln(k/(np)), being γ̂(k) any

consistent estimator of γ. We shall thus work with the so-called classical ln-VaRp

estimator, denoted lnQ(p)
H

(k).

In order to be able to study the asymptotic behavior of lnQ(p)
H

(k), as well as of
alternative lnV aRp-estimators, it is useful to impose a second order expansion on
1 − F or on U . Here we shall assume that we are working in Hall’s class of models
(Hall and Welsh, 1985), where U(t) = Ctγ(1 + γ β tρ/ρ + o(tρ)), as t → ∞, with
C, γ > 0, ρ < 0 and β non-zero. We shall further use the notation A(t) := γ β tρ.
From the results of de Haan and Peng (1998), it follows that in Hall’s class of models,√
k (H(k)− γ)

d
= Normal(0, γ2) +

√
k (γ β (n/k)ρ/(1− ρ))(1 + op(1)). Under the

above mentioned conditions, the asymptotic behavior of lnQ(p)
H

(k) is also well-known,

i.e.,
√
k(lnQ(p)

H
(k)− ln VaRp)/ ln(k/(np)) −→d

n→∞ Normal(λ/(1− ρ), γ2), provided

the intermediate sequence k = kn satisfies limn→∞
√
k A(n/k) = λ ∈ R, finite.

We shall work with the reduced bias tail index estimators in Caeiro et al. (2005)
and Gomes et al. (2005). The estimator in Caeiro et al. (2005) has the functional
expression, H β̂, ρ̂(k) := H(k)(1 − β̂(n/k))ρ̂/(1 − ρ̂)), where (β̂, ρ̂) is an adequate

consistent estimator of (β, ρ), with both β̂ and ρ̂ based on a number of top o.s. k1 of
a larger order than the number of top o.s. k used for the tail index estimation. This
is thus a bias-corrected Hill estimator. The class of estimators in Gomes et al. (2005)
is similar to the previous one, but it has been inspired in the tail index estimator
provided in Gomes and Martins (2002), i.e., it is based on the maximum likelihood
approach associated to the scaled log-spacings Ui. With the same notation as before,
we shall work also with the tail index estimator MLβ̂, ρ̂(k) := H(k)−β̂ (n/k)ρ̂ Dk(1−
ρ̂), where Dk(α) = 1

k

∑k
i=1(i/k))α−1Ui. This is another example of a bias-corrected

Hill estimator, where we are using Dk(1− ρ̂) as an estimator of γ/(1− ρ). We shall

here consider the alternative ln-VaRp estimators, lnQ
(p)

H
and lnQ

(p)
ML. Under the

same conditions as before, if we work with H or ML, generally denoted T , we get√
k(lnQ(p)

T
(k)− ln VaRp)/ ln(k/(np)) −→d

n→∞ Normal(0, γ2), even when λ 6= 0 (see

Gomes and Pestana (2005), for a proof related to the use of H).

Asymptotic confidence intervals (CI’s) for γ based on the Hill estimator.
Since,

√
k {H(k)/γ−1−β(n/k)ρ/(1−ρ)} ≈ Normal(0, 1), whenever

√
k (n/k)ρ → λ,

finite, we may get approximate 95% CI’s for γ, given by (H(k)/(1 + β(n/k)ρ/(1 −
ρ) + 1.96/

√
k), H(k)/(1 + β(n/k)ρ/(1− ρ)− 1.96/

√
k)) =: (LCLH (k), UCLH (k)).

Asymptotic CI’s for γ based on second order reduced bias tail index esti-
mation. We may state the following:

Proposition 4 (Caeiro et al., 2005; Gomes et al., 2005). For models in Hall’s
class, let us assume that k is intermediate and that

√
k A(n/k) → λ, finite and
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non necessarily null, as n → ∞. Then, with T denoting either H or ML,√
k (Tβ,ρ(k) − γ) −→d

n→∞ Normal(0, γ2). This same limiting behaviour holds if

we replace Tβ,ρ by Tβ̂,ρ̂, provided we consider, for instance, ρ̂τ (k) and β̂ρ̂(k), the esti-

mators in Fraga Alves et al. (2003) and Gomes and Martins (2002), respectively, and
ρ̂ = ρ̂τ (k1), β̂ := β̂ρ̂(k1), for any k1 such that ρ̂− ρ = op(1/ lnn).

On the basis of the statisticsH andML, and for levels k such that
√
k (n/k)ρ → λ,

possibly different from zero, we get a 95% approximate CI for γ, given by
(LCLT (k), UCLT (k)) = (T (k)/(1 + 1.96/

√
k), T (k)/(1 − 1.96/

√
k)), again with T

denoting any of the estimators H and ML.

An adaptive choice of the level for reduced bias estimators. Here, we have
decided to use a heuristic adaptive choice of k, similar to the one suggested in Gomes
and Pestana (2005). We do not have simple techniques to estimate the optimal
threshold of second order reduced bias’ estimators, but we know that such a k should
be larger than kH0 = ((1 − ρ) n−ρ/(β

√
−2ρ))2/(1−2ρ), the optimal level for the Hill

estimator. If we plot the 95% approximate confidence region, as a function of k, the
Hill estimate is sooner or later going to cross it. We shall use such a k-value for
the tail index estimation through the second order reduced bias’ tail index estimator
H(k) and ML(k), as well as for the associated lnVaR estimation. Such a crossing
level is solution of the equation |β| (n/k)ρ/(1 − ρ) = 1.96/

√
k, i.e., we get k01 ≡

k01(n;β, ρ) = (1.96(1 − ρ)n−ρ/|β|)2/(1−2ρ). Levels of this type are still levels such
that

√
k A(n/k) → λ, finite, and are not yet optimal for the tail index estimation

through second order reduced bias’ tail index estimators. However, with the tail index
estimators H and ML, that behave better than the Hill for all k, we are always safe.

Asymptotic CI’s for ln-VaRp. We may also easily estimate, now numerically, the

“optimal” threshold for the ln-VaR estimation through lnQH , i.e., the level k
Q
H

0 ≡
k
Q
H

0 (n, p;β, ρ) := arg mink{ln2(k/(np))(1/k + β2(n/k)2ρ/(1 − ρ)2)}. We may also
find approximate CI’s for ln VaRp on the basis of lnQ(p)

H
(k) and for any level k such

that
√
k A(n/k) → λ, finite. We get a 95% CI, dependent on γ, and with bounds

lnQH (k)∓γ ln(k/(np))(1.96/
√
k±β(n/k)ρ/(1−ρ)). In order to have the guarantee of

a coverage probability at least equal to 95%, we shall work with (LCLQ
T
, UCLQ

T
) =

(lnQT − 1.96× UCLT ln(k/(np))/
√
k, lnQT + 1.96× UCLT ln(k/(np))/

√
k), with T

denoting either H or ML.

2. An algorithm for the empirical V aR analysis

We shall provide an empirical data analysis of log-returns associated to five sets of
financial data, collected over the same period: from January 4, 1999, until November
17, 2005. Those sets of data are: the Euro-USA Dolar (EUSD), the EU-UK Pound
(EGBP) daily exchange rates and the daily close values of Dow Jones Industrial Av-
erage In (DJI), Microsoft Corp. (MSFT) and International Business Machines Corp.
(IBM) stocks. We propose the following Algorithm:
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1. Given a sample (X1, X2, · · · , Xn), plot, for τ = 0, 1, the estimates ρ̂τ (k) in
Fraga Alves et al. (2003);

2. Consider {ρ̂τ (k)}k∈K, for k ∈ K = ([n0.995], [n.999]), compute χτ , their median.
Choose the tuning parameter τ∗ := arg minτ

∑
k∈K(ρ̂τ (k)− χτ )2;

3. Work with ρ̂τ∗ = ρ̂τ∗(k1), β̂τ∗ := β̂ρ̂τ∗ (k1), k1 = min(n − 1, 2 n0.995/ ln(lnn)),

being β̂ρ̂(k) the β-estimator in Gomes and Martins (2002);

4. Plot H(k), and adaptively consider H(k̂H0 ), together with the 95% approximate
CI, (LCLH (k̂H0 ), UCLH (k̂H0 )).

5. Plot the reduced bias estimates Hτ∗(k) and MLτ∗(k), associated to (ρ̂τ∗ , β̂τ∗)
obtained in step 3. Adaptively consider H(k̂01) and ML(k̂01), together with the
95% CI’s (LCLT (k̂01), UCLT (k̂01)), with T standing either for Hτ∗ or MLτ∗ .

6. Choose the tail index estimate providing the smallest 95% confidence size.

7. Plot the ln-VaR estimates, lnQH (k), and adaptively consider lnQH (k̂
Q
H

0 ). Con-

sider also the approximate CI, (LCLQ
H

(k̂
Q
H

0 ), UCLQ
H

(k̂
Q
H

0 ));

8. Plot the reduced bias ln-VaRp estimates, lnQ
(p)
Tτ∗

(k), with T replaced by H and

ML, and associated to the estimates (ρ̂τ∗ , β̂τ∗) obtained in step 3. Adaptively

consider lnQ
(p)
Tτ∗

(k̂01), together with the associated CI;

9. Choose the ln-VaRp estimate providing the smallest confidence size.

Remark 7. Theoreticaly, the chosen estimate in step 6. should be H0(k̂01) or
ML0(k̂01). Indeed, for all data sets considered, we have been led to ML0(k̂01).

3. Data analysis

In the following table, where we use the notation n0 for the number of positive log-
returns in any of the series, we summarize the tail characteristics of the five data
sets.

DJI EGBP EUSD IBM MSFT

n0 867 835 867 881 882

(ρ̂0, β̂0) (−0.72, 1.02) (−0.72, 1.02) (−0.70, 1.03) (−0.74, 1.02) (−0.72, 1.02)

(k̂H0 , H(k̂H0 )) (73, 0.270) (71, 0.303) (68, 0.269) (76, 0.386) (72, 0.392)
(LCLH , UCLH ) (0.203,0.311) (0.227, 0.350) (0.200, 0.311) (0.292, 0.445) (0.294, 0.452)

(k̂01, H0(k̂01)) (146, 0.302) (142, 0.297) (137, 0.253) (153, 0.376) (145, 0.317)
(LCL

H
, UCL

H
) (0.260, 0.361) (0.255, 0.356) (0.216, 0.305) (0.324, 0.447) (0.272, 0.379)

ML0(k̂01) 0.296 0.293 0.249 0.370 0.316
(LCLML , UCLML ) (0.254, 0.354) (0.251, 0.350) (0.213, 0.300) (0.319, 0.440) (0.271, 0.378)

(k̂
Q

H
0 , QH (k̂

Q
H

0 )) (48, 1.899) (47, 1.031) (44, 1.275) (52, 2.972) (48, 2.738)
(LCLQ

H
, UCLQ

H
) (1.403, 2.192) (0.546, 1.317) (0.805, 1.552) (2.302, 3.365) (2.204, 3.051)

Q
H

(k̂01) 1.917 1.066 1.206 2.858 2.689

(LCLQ
H
, UCLQ

H
) (1.617, 2.218) (0.764, 1.367) (0.947, 1.464) (2.493, 3.224) (2.374, 3.004)

QML (k̂01) 1.887 1.040 1.185 2.830 2.684
(LCLQML

, UCLQ
H

) (1.593, 2.182) (0.744, 1.336) (0.931, 1.440) (2.470, 3.190) (2.370, 2.998)
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