Limiting crossing probabilities of random fields
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Abstract: Random fields on Z3, with long range weak dependence for each coordinate
at a time, usually present clustering of high values. For each one of the eight directions
in Z%, we can restrict the local occurrence of two or more crossings of high levels. These
smooth oscillation conditions enable to compute a clustering measure, called extremal
index, from the limiting mean number of crossings. In fact, only four directions must be
inspected since for opposite directions we find the same local path crossing behaviour and
the same limiting mean number of crossings. The general theory is illustrated with several

1-dependent non stationary random fields.
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1 Introduction
Let X = {Xy}n>1 be a random field on Zi, where Z is the set of all positive integers
and d > 2. We shall consider the conditions and results for d = 2 since it is notationally
simplest and the proofs for higher dimensions follow analogous arguments.

For a family of real levels {un;:i < n}nzl and a subset I of the rectangle of points
Ry ={1,...,ni} x{1,...,ny}, we will denote the event {[;c; Xi < un;i} by {Mn(I) < u}
or simply by {My < u} when I = R,,.
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For each v = 1, 2, we say the pair I C Zi and J C Zi is in §;(!) if the distance between
I1;(I) and I1;(J) is great or equal to [, where II;, i = 1,2 denote the cartesian projections.
The distance d(I,J) between sets I and J of fo_, d > 1, is the minimum of distances
d(i,j) = maz{lis — js|,s=1,...,d},i€Tand j€ J.

Suppose that X satisfies a coordinatewise-mixing type condition as the A(uy)-condition
introduced in [9], which exploits the past and future separation one coordinate at a time.
Let F be a family of indexes sets in Ry. We shall assume that there exist sequences of

integer valued constants {k,,}, {l,,}, i = 1,2, such that, as n = (ny,n2) — oo, we have

ko ln, ko ly
(ks bny) = 00, (——, —=—2)—>0 (1.1)
n1 g
and (kn, A1, kn, knyAg) — 0, where A; are the components of the mixing coefficient defined

as follows:

Ay = supl P(Ma(Ty) < 1, My (Ty) < 0) — P(My(Iy) < ) P(Ma(Ty) < )],
where the supremum is taken over pairs Iy and Iy in Sy (/,,)NF,

Ay = supl P(Ma(Ty) < 1w, My (Ty) < ) — P(My(Iy) < ) P(Ma(Ty) < )],

where the supremum is taken over pairs I; and Iy in Sz(/,,)NF. We say then X satisfies
the D(up ;) condition over F.

In fact, we could consider a slightly weaker condition, as in [9], if we where concerned
only with stationary random fields.

We prove, in the next section, that the maxima over disjoint rectangles behave asymp-
totically as independent maxima.

Restrictions on clustering of high values for stationary and non-stationary time series
have been considered in the form of D’ condition introduced in [6] ( see also [4]). In [11] we
introduced a D’ condition tailored for random fields not necessarily stationary. That con-
dition and the coordinatewise long range dependence lead to a Poisson approximation for
the probability of no exceedances over R, and the result can be applied to nonstationary
Gaussian random fields.

Here, in section 3, we discuss the behaviour of the maxima when clustering of high

values of X is allowed but we restrict the local occurrence of two or more crossings of



the high levels up ;. For each one of the eight directions in Zi, we can restrict the
local occurrence of two or more crossings. These smooth oscillation conditions enable to
compute a clustering measure, called extremal index, from the limiting mean number of
crossings. We prove that, in fact, only four directions must be inspected since for opposite
directions we find the same local path crossing behaviour and the same limiting mean
number of crossings.

We illustrate these results with several 1-dependent non stationary random fields,

which satisfy different local crossing conditions.

2 Asymptotic independence of maxima
Under the coordinatewise-mixing D(uy j)-condition we have the asymptotic independence
for maxima over disjoint rectangles of indexes. In the following F,,,, denotes maz{P(X; >

Upi) 11 < n}.

Proposition 2.1 Suppose that the random field X satisfies the condition D(un;) over F
such that (I C IAJ €F)= J €F and for {un; :i < n}n>1 such that

{nlngfmw_}nzl 1s bounded. (2.2)

IfV,p=1 xJp,, r=1,...,kn,p=1,...,k,,, are disjoint rectangles in F, then, as

n — oo,
P((\Ma(Vsy) < u) = [[ P(Ma(V..,) < w) 0.
r,p p

Proof: From (1.1) and (2.2), for the purpose of the above convergence we can assume that
04(V,,p) > 1, or 3(V,,) > [,,. If all the pairs of rectangles V, , are in S1(l,,,)US2(ly,)
then the result follows inductively from the condition D(up;). On the contrary, we can
eliminate /, columns or /,, rows of indexes in V, , in order to obtain V;p C V.,
r=1,...,kn,p=1,...,ky,, to which we can apply inductively the condition D(uy;).
O



3 Limiting crossing probabilities

We discuss now the limiting distribution of maximum when, in addition to coordinatewise-
mixing condition, we restrict the local path behaviour with respect to the number of
crossings of the high levels uy ;.

Since the natural notion of crossing at i = (i1, 72) would get in consideration the values
of the random field over the eight neighbours of i, id est, over the points j such that
d(i,j) = 1, then by taking 5 ({i}) = {j : d (1,j) = 1}, we say that X has a crossing at i if
occurs the event

Bin = {Xi < tnj, U X5 > tunj}.
jes({i})

Using the ideas of [8], in combination with [5] and [2], to avoid clustering of crossings
by a nonstationary random field, we would assume, for each rectangle I satisfying

Y P(Bin) < kmlk@ > P(Bia),

icl i<n

that it holds

knlkn2 Z P(Biﬂ—l, Bj7n) n—)—oo> O
ijel
However, we verified that an i.i.d. random field doesn’t satisfy the previous condition for

normalized levels {uy}n>1 such that

nina P(X1 > tn) —— 7. (3.3)

n—oo
For each i = (i1,i) € Z3, let by(i), s = 1,...,8, be the neighbours of i defined as
bi(1) = (i1+1,142), b2 (1) = 141, b3(i) = (i1, 12+1), ba(i) = (i1—1,4241), bs(i) = (41— 1, 12),
bs(1) =1—1, b7(i) = (41,42 — 1) and bg(i) = (41 + 1,43 — 1). Foreach s =1,...,8, we shall
denote the s-crossing event {X; < Un i, Xp, (1) > “n,bs(i)} by Bip,(i),n or simply by Bjp (i,
where X, ;) = —oo if b,(i) ¢ Z3.
In fact, for an i.i.d. random field X, {un}n>1 satisfying (3.3), and I = {1,... ,[k”Tll]}

x{1,...,[f%]} we have
n2

1
PBlnS
> P <

iel 2

Z P(Bin)



and

knlkﬂz Z P(Bim? BjJL) Z
ijel

knikny > ) P(Biy, iy Bip(s) >

s#t i,j€el

n; ,
ke, ko, | |([k ] — 1)P(X1 > un) P*(X1 < un),
=1 i

which tends to 7, as n — co. By an analogous reasoning with subsets of 3 ({i}) with more

than one element, we conclude that we can only restrict the number of crossings in each

one of the eight directions at a time.

Since the only direction that joins the notion of past and future along both coordinate
axes, simultaneously, is the diagonal direction from i to i+ 1, it was considered in [11] a
condition which restricts the local occurrence of two or more of these diagonal crossings, id
est, a condition that restricts the local occurrence of two or more events {Xj < up i, Xiy1 >
‘un,i+1}-

Here we shall consider a more general approach to crossing events of random fields
through the family of the eight local conditions. Different examples can verify different
conditions of this family, as we shall illustrate in the end of this section.

Let C(Bjp,(i),n) denote the family of indexes sets I C Ry such that

1
> P(Biy.giym) < - > P(Biy.(i)n)-
iel n1ng
Definition 3.1. Let s € {1,...,8}. The condition D"(Byp,),,) holds for X if for each
I € C (B, (i),n) we have
knykny > P(Bip, iy, Bip.(i)on) —0.
ijel

Each one of these eight local conditions D”(Bi,bs(i),n) will be a sufficient condition
to compute the limit of P(My < u) from the limiting mean number of s-crossings, in
Proposition 3.2. In order to apply this proposition, we only need to inspect one of four

directions, as shows the next result.



Proposition 3.1 Suppose that the random field X satisfies (2.2) and let s € {1,...,4}.
Then

(i) X satisfies the condition D"(Biy iy,,) if and only if it satisfies the condition
D"(B, 5a(i) ), where by = byi4;

;0s(1),m

(ii) D P(Bip.(i)m) ——v >0 if and only if > P(Bi5-y..) —— v > 0.

4 4 n—co
i<n i<n

Proof: To obtain (i) we first note that

> PBis.y Bis) = D P(Biptiys Xou(i) > thn,p(i)

ijel ijel
> P(Bip.gy Xi > ung) + Y P(Bipiy Xi > g, Xo,) < Unpa())-
ijel ijel
By applying the same decomposition to Bjp,(j) in each of the above terms we get
> P(Bip,y Bin) = O PBisziy Bismgy) + (ki bny).
ijel ijel

The result in (ii) follows by an analogous argument. O

Under the conditions (1.1) and (2.2), in the proof of the proposition 3.2 we can sup-
pose that, for each rectangle V, , in the partitions that arise for Ry, the variables Xj
with indexes in the boundary of V, , exhibit values below the correspondents levels uy ;.
Asymptotically, the probability of the complementary of that event is negligible. So, for
each fixed s, it occurs some event By, ;) with 1 € V,, if and only if we have some ex-

ceedance over V, .

Proposition 3.2 Suppose that the random field X verifies conditions (2.2), D”(Bi,bs(i),n)
Jor some s € {1,...,8} and D (un;) over C(Bip,(),n)-Then, as n — oo,
P[] Xi € ung) = €™, v >0,
i<n
if and only if
> P(Biy.iym) —v > 0.

i<n



Proof: We will built &y, k,, rectangles in C(By,(),,) as follows. First split Ry in &y,
quasi-rectangles I', = {s,_1 + 1} x{t’_;+1,... ,na}U{s,—1+2,...,8 3 x{1,... ,na} U

{s, +1} x{1,...,t5 <ma}, 7 =0,...,k,, so =0 =t5, with £ maximally choosen such
that

Z P(B; < — Z P(Bip,(

ier, Fn, i<n
Let I, = {s,—1 +2,...,s.} x {1,...,n2} and now we split each rectangle I, in k, k,,

quasi-rectangles V', , = {s; _; +1,...,8:} X {tpo1 + 1 U{s,m1 + 1,00y 8. ) X {fpo1 +
2t Udsrcn sk, s b x{tp 1), p =10k, to = 0, 85 = sp_1, with

s* maximally choosen such that

T7p
1
> P(Bip.g) < p > P(Bis.g).

k
iev/,, n1tn2 i<n

Let V., ={s,—1+2,...,s.} x{t,-1+2,...,t,} and B(V,,) its boundary. By (1.1) and
(2.2), we have

> P(Mn(B(Vyp) > ) < 2(knyna + knyn2) Frnaz = 0(1) (3.4)

and to obtain the result it is sufficient to prove that

P((\Mu(V:p) < u) = €™, v >0,

if and only if

ZZ ) —v>0.

p IEV1 Ng

This follows from Proposition 2.1, (3.4), condition D//(Bi,bs(i),n) and the following relations:

[T P(Ma(Ve) <) = eap(=(1 4 0(1)) Yo (1 = P(Ma(V,,) <)) =

cap(=(14 o) 3 PMa(Vrp) > Mol B(V-y) < 1) +(1) =
e:z:p( (14+o0(1 Z Z 0(1)).
rp i€V,



If X is stationary the result follows by assuming uni = %n, i < n, and condition
D”(Bi,bs(i),n) as
ning Y P(Bigaym Bibeiyn) —— 0.

" . n—oo
<)

Weaker local dependence conditions can be considered as in [3].

Accordingly to [1], the stationary random field X has extremal index 8 € [0, 1] if, for
each 7 > 0, there exists {ug)}nzl satisfying (3.3) and P(M, < ug)) — exp(—0T1), as
n — oo.

If X is an i.i.d random field or a stationary random field satisfying the conditions of
the Proposition 3.1 of [11], then the extremal index equals to 1.

For nonstationary random fields the extremal index can be defined in a similar way:

—loglimy P(ﬁiSn X; < uf;))

0 =
(r -

where
7 =lim Z P(X; > “517,1)) (3.5)
i<n
Here the extremal index may depend on 7, as pointed out examples in [4].

The following result gives a convenient existence criterion of the extremal index and

follows immediately from Proposition 3.2.

Corollary 3.1. Suppose that the random field X satisfies (2.2), D"(Bjp,),) for some
s€{l,...,8} and D (un;) over C(Bip,(i),n) with un; = ufl‘rl) satisfying (3.5). Then there
exists 6(t) if and only if there exists
v=lim > P(Bi,)n)
i<n

and, in this case, it holds
v

6(r) = —

The clustering measure extremal index can be considered for sub-fields of X. Let

{In},>; be an increasing sequence of sub-sets of Ry. If for each 7 > 0 there exists a

8



family of levels {vl(:i),i € Injn>1 such that

Z P(X; > vl(:l)) —)n_mo T
iel,
and

P( ﬂ X; < ’U(Ti)) —— exp (—07),

. MY n—eo
iel,

we say that X has extremal index 6 over | J, v In.

In general, we can’t compare the extremal_indexes over regions with the extremal index
of the random field since the normalized levels are not, in general, coincident.

We will now illustrate the results with several 1-dependent random fields which satisfy
different local dependence conditions. Let Y = {Y3},5, be an i.i.d. random field and
{tn},>, such that nynoP(Y1 > un) — 7. From Y we ;hall define several nonstationary

and non isotrophic random fields.

Let X = {Xp},5, besuch that for each i = (4y,4y) = (2k+1,2s+1), k,s > 0, it holds
Xi =Yi, Xy, = Yo ti)s Xno() = maz{Ys, i), Va6 and Xy, 6y = maz{¥i, Yo, )}
This random field only satisfies D”(Bi,bs(i)) for s = 3 and s = 7 and has extremal index
0=2/3.

Let W = {Wy},», be such that for each i = (41,i3) = (2k+ 1,25+ 1), k,s > 0, it
holds Wi = Yi, Wy, 5y = maz{Yi, Yy, i)} Wi,y = Ya,(6) and Wi, 5y = maz{¥i, Yo, i) }-
This random field satisfies D”( By, () for s = 1,3,5,7 and has extremal index 6 = 5/6.

Finally, let U = {Uy},,5; be such that for each i = (i1,i3) = (2k+ 1,25+ 1), k,s >
0, it holds U; = Y, Uy, 5y = maz{¥i, Yy, 5y}, Up,5) = maz{¥y gy, Vi)t and Up,) =
maz{Ys, iy, Y, (i)} -
This random field does not satisfy any condition D"(Bj,¢)). However it has extremal
index # = 2/3 which we can easily compute directly. Let I; , = {(41,25 + 1) : i3 <
niA2s+1<mng}and I, =Ry — I n. We have

P(Mn < u) = P(Mn(ll,n) < U)P(Mn(IQ,n) < uan(Il,n) < u)



which converges to exp(—Z)r.

Since ZP(Xi > Up) — 27’ > 0 we find the value 6§ = 2/3.
i<n

For the region | J,+, I1,n we find 611 = 2 and for |J,5; Io.n we find 61, = 3.
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