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Abstract. The Shewhart control charts are the most popular tools in Sta-
tistical Process Control (SPC) used for monitoring industrial processes. They are
usually developed under the assumptions of independent and normally distributed
data, which rarely hold true in practice, and are usually implemented with esti-
mated control limits. As in general we mainly want to control the process mean
value and the process standard deviation independently of the data distribution, it
seems sensible to advance with control charts based on robust statistics to moni-
tor the process parameters, more resistant to moderate changes in the underlying
process distribution. In this study we investigate the advantage of using control
charts based on robust statistics together with the use of robust estimates for the
target process values under control. Apart from the traditional control charts, the
sample mean chart and the sample range chart, we consider robust control charts
based on the total median and on the total range statistics for monitoring the
process mean value and the process standard deviation. Through the use of Monte
Carlo simulations we compare all these charts in terms of robustness and perfor-
mance. Finally we illustrate the behavior of these charts when implemented to

monitor a cork process production.
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1 Introduction

For monitoring industrial processes, or more precisely, a quality characteristic X, at
the targets po and og, the mean value and the standard deviation of the process X,
respectively, the most commonly used charts are the Shewhart control charts with
3-sigma control limits. These charts are usually developed under the assumptions

of independent and normally distributed data, and have control limits of the form

CL's = E(W) +3,/V(W), (1.1)

where W, E and V denote the control statistic of the chart, its expected value and
its variance, respectively. More precisely, to monitor the process mean value (u) it
is common to implement a two-sided sample mean chart, X, also denoted M-chart,

with lower and upper control limits given by
LCLy = po — 300/v/n, UCLy = po + 300/v/n. (1.2)

To monitor the process standard deviation (o) it is common to implement a sample

range chart, R, with lower and upper control limits given by
LCLgr = dyog — 3dsog, UCLR = dyog + 3d3oyg, (13)

where ds and d3 are the constants tabulated for standard normal data presented in
Table 2 for the most common sample sizes n. General details about control charts
may be found, for instance, in Montgomery (2005) and in Ryan (2000).

For normal data and when it is not necessary to estimate the control limits,
the Shewhart control charts present a reasonable high performance in detecting
moderate to large changes that can occur in the process parameters. However,
despite of the importance of the normal distribution in SPC, the experience tells
us that even in potential normal situations there is some possibility of having an
underlying non-normal distribution, with moderate to strong asymmetry and with
tails heavier than the normal tail, as well as a significant correlation between the
observations.

Additionally, in practice the target values ug and og are not fixed given values,
and we have to estimate them to determine the control limits of the chart. Se-
veral studies refer that to obtain control charts with estimated control limits with

the same properties as the correspondent charts with true limits, even for normal



data, we must use a large number of initial subgroups in the estimation, and we
must determine the control limits in a robust way in order to minimize the effect of
possible outliers in the initial subgroups. The effect of the estimation of the control
limits and of the non-normality in the performance of the usual control charts
can be found in Rocke (1989, 1992), Quesenberry (1993), Amin and Lee (1999),
Nedumaran and Pignatiello (2001), Chakraborti (2000, 2006), Champ and Jones
(2004), Figueiredo and Gomes (2004, 2006) and Jensen et al. (2006), among others.
Schilling and Nelson (1976), Balakrishnan and Kocherlakota (1986) and Chan et al.
(1988) provide some corrections to the control limits of the usual control charts in
order to maintain the expected false alarm rate when monitoring non-normal data.

To sum up the traditional control charts must be used carefully, being im-
portant to verify as far as the assumptions associated to the implementation of
the traditional charts are fulfilled by the data process, in order to decide for the
implementation of a control chart for the specific distribution whenever it seems
necessary, or instead, for the implementation of a robust control chart, less-sensitive
to the normality assumption and to the estimation of unknown parameters.

In this study we shall investigate the benefits of using control charts based on
robust control statistics, so that we do not have either a very high or a very low
false alarm rate whenever the parameters to be controlled are close to the targets,
although the data is no longer normal, together with the use of robust estimates
for the target values under control. Some considerations about “robust” estimation
can be found in Hampel (1971), Lax (1985), Hoaglin et al. (1983), Hampel et al.
(1986), Figueiredo (2003a, 2003b) and Figueiredo and Gomes (2004), among others.
The design of some “robust” control charts can be found in Rocke (1989, 1992) and
in Figueiredo and Gomes (2004, 2006), for instance.

In Section 2 we provide some information about the total median and the total
range statistics, considered in this study to estimate and to monitor the process
mean value and the process standard deviation, together with the sample mean
and the sample range statistics. We analyze the robustness and efficiency of these
location and scale estimators, as well as their sampling distribution. In Section 3
we present some simulation results about the robustness and the performance of
some control charts, and in Section 4 we compare their performance to monitor a

cork process production.



2 The total median and the total range statistics

Let us denote (X1, ---,X,) a random sample of size n taken from a process X
with distribution function (d.f.) F, and (X(y),---, X(;)) the random sample of the
associated ascending order statistics (0.s.). Given an observed sample (xq,- - ,x,),
the random associated bootstrap sample, (X7, --,X}), is a random sample of
independent, identically distributed (i.i.d.) replicates from a random variable (r.v.)
X*, with distribution function equal to the empirical d.f. of our observed sample,

i.e., given by

1 & 1 if A occurs
Fr@)== 3" Ijpcs, withIy=
" n ; frsay 0 otherwise

the indicator function of the set A.

Definition 2.1. The bootstrap median, i.e., the median of the bootstrap sample, is

given by

[ ifn=2m—1,
(X(*m) + X(*m+1)) /2 ifn=2m, m=1,2

and the bootstrap range, i.e., the range of the bootstrap sample, is given by
_ * *
BR = X(,,) — X{y)-

Remark 2.1. Note that given an observed sample (x1,--- ,xy), the support of the
bootstrap median is the set {(.Z'(i) +x;))/2,1<i<j< n}, and the support of the

bootstrap range is the set {a:(j) -z, 1<i<j< n}
Let us denote «;; and f;; the following probabilities:
(i) T 2G) L o
o =P BMd:T , 1<i<j<n, (2.1)

,Bij:P(BR:.%'(j) —:L'(i)), 1<i <y <n, (2.2)

with P(A) denoting the probability of the event A. Cox and Iguzquiza (2001) and

Figueiredo and Gomes (2004, 2006) present explicit expressions for «;; and §;;.

Definition 2.2. The total median statistic, here denoted TMd, is given by

non Xz + X, n
TMd:= Z Zaij % = ZalX(l), (23)
i=1

i=1 j=i



and the total range statistic, here denoted TR, is given by

n—1 n n
i=1 j=it+1 i=1
where the coefficients a; and b; are given by a; = % (Z?:l Qi + 2;21 O[ji) and
b; = Z;;ll Bji = Y i—ip1 Bij, 1 < i <.

Remark 2.2. Note that the coefficients a; and b; are independent of the underlying
model F, depending only on the sample size n. A linear combination of the sample
0.s. with weights given by these coefficients, such as the TMd or the TR statistics,
define a kind of “robust” trimmed-mean or “robust” range, where the percentage
of trimming is determined independently of the underlying distribution of the data.
The extreme observations have a smaller influence in these statistics than in the
sample mean or in the sample range statistics, and thus they can be used to estimate
the location and the scale parameters when there is a possibility of having some
disturbances in the data such as some outliers or contaminated data. In Table 1 we
present, for each entry i, the values of the coefficients a; and b; with three decimal

figures, for the most usual sample sizes n in SPC.

Table 1: Coefficients a; and b;, a; = ap—;1+1 and b; = —by_jy1.

z/n 3 4 5 6 7 8 9 10

1 a 0259 0156 0.058 0.035 0.010 0.007 0.001 0.001
b; -0.750 -0.690 -0.672 -0.666 -0.661 -0.657 -0.653 -0.652

2 a; 0482 0344 0.259 0.174 0.098 0.064 0.029 0.019
b; 0.000 -0.198 -0.240 -0.246 -0.245 -0.244 -0.242 -0.241

3 a; 0.366 0.291  0.239 0.172 0.115 0.078
b; 0.000 -0.058 -0.073 -0.077 -0.078 -0.079
4  a 0.306 0.257 0.221 0.168
b; 0.000 -0.016 -0.020 -0.022
5 0.268 0.234
b; 0.000 -0.004




2.1 Location and scale estimators: robustness and efficiency

Several Monte Carlo simulation studies have been carried out to evaluate the
efficiency and the robustness of some location and scale estimators, including the
total median and the total range statistics. Some of these studies are presented
in Figueiredo (2003a, 2003b) and in Figueiredo and Gomes (2004, 2006), for a
reasonably large set of symmetric and asymmetric distributions, with different

skewness and tail weight.

Remark 2.3. To compare the efficiency of the different location estimators we have
evaluated their mean square error; since this measure is affected by the scaling of
the estimator, to compare the scale estimators we have computed the variance of the
logarithm of the estimator. Details about performance measures of scale estimators

can be found in Laz (1985).

Remark 2.4. To select the most robust estimator among the estimators under
study we applied the following Max/Min criterion: first, for every distribution we
obtain the most efficient estimator, among the ones considered; then, we compute
the efficiency of the other estimators relatively to the best one, previously selected;
next, for each estimator we save the obtained minimum relative efficiency along all
the considered set of distributions, i.e., the “degree of robustness”of the estimator;

finally, the most robust estimator is the one with the highest “degree of robustness”.

From the results of these studies we conclude that the T'Md statistic can
be used to estimate the median value of a distribution F', as well as the mean
value of a symmetric or approximately symmetric distribution; the TR statistic
can be used to estimate the process standard deviation. Note that the R and
the TR statistics are biased estimators for the standard deviation; for providing
an unbiased estimate whenever the underlying model F' is normal, we consider
standardized versions of these statistics, obtained by the division of R and TR by
a scale constant. These constants are equal to the statistic expected value for the
standard normal distribution (here denoted by dy = ds, g and ds 1R, respectively),
and are given in Table 2, together with the statistic standard deviation (here

denoted by ds = d3 g, ds,7r and ds rarq), for the most common values of n.



Table 2: Expected value, dy o, and standard deviation, d3 ., of the R, TR

and T'Md statistics for standard normal distribution; do 774 = 0.

Constants 3 4 5 6 7 8 9 10

ds 1.693 2.059 2.326 2.534 2.704 2.847 2970 3.078
dQ’TR 1.269 1.538 1.801 2.027 2.210 2.364 2491 2.610
ds 0.888 0.880 0.864 0.848 0.833 0.820 0.808 0.797
d3 TR 0.666 0.653 0.657 0.659 0.656 0.650 0.641 0.636

d3 Tmd 0.583 0.507 0.464 0.425 0401 0375 0.359 0.340

To analyze the robustness of the previous statistics, and following the methodo-
logy presented in Figueiredo (2003b) and Figueiredo and Gomes (2004), we consider
several symmetric distributions, related with the standard normal distribution, and
with different tail-weights 7, an indicator defined in (2.5), . More precisely, we

consider standardized data of the following set D of symmetric distributions:
1. the standard normal, N(0,1);
2. the standard logistic, Log(0,1);
3. the Student-t distributions, ¢,, with 3, 5 and 10 degrees of freedom, v;

4. the contaminated normal distributions, CN(a100%), in which each obser-
vation has a (1 — a)100% probability of being drawn from the N(0,1) and
«100% probability of being drawn from the N(0,k), with percentages of con-
tamination, a, of 0.01, 0.05 and 0.10, and a standard deviation k of 3.

Note that even in potential normal situations there is some possibility of having
disturbances in the data, and one of the previous distributions in D, for instance,

could describe the process data in a more reliable way.

Definition 2.3. The tail-weight coefficient of a distribution F, here denoted T, is

given by
F*(0.99)—F*(0.5) F*(0.5)—F“(0.01)
1 7= F~(05) T F=(0.5)_F~(0.25) 95
) < (0.99)—d+ (0.5) ’ (2.5)
$<(0.75)—0+(0.5))

T:




where F*~ and ® denote the inverse functions of F' and of the standard nor-

mal distribution function ®, respectively. For symmetric distributions we have

_ F*(0.99) /<1>‘—(0,99)
(

T=F=07/ 3707 the tail-weight coefficient defined in Hoaglin et al. (1983).

In Figure 1 we present the most efficient estimator for the mean value and for
the standard deviation of a distribution F' in D, for sample sizes 3 up to 10; in
Figure 2 we picture the degree of robustness of the previous estimators. Apart
from the M = X and the TMd location estimators we have considered the sample
median estimator, Md, and apart from the R and the TR scale estimators we have

considered the sample standard deviation estimator, S.
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Figure 1: Most efficient estimator for the mean value (left) and for the

standard deviation (right).
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Figure 2: Degree of robustness of the location (left) and scale (right) esti-

mators under study.



From these figures we can observe that the T Md-estimator is much more
robust to changes in the underlying distribution F' than the sample mean and the
sample median estimators, M and Md. The T R-estimator and the S-estimator
present similar degree of robustness when we consider any distribution F in D as
possible to describe the data process, and are more robust than the R-estimator.
The T Md and the T R estimators are the most efficient to estimate the mean value
and the standard deviation of a moderate-to-heavy tailed distribution, respectively;
we advise the use of the M and of the S estimators only for distributions with
small tail-weight and moderate-to-large sample sizes; in the extreme case of small
samples and too heavy tailed distributions, the sample median and the total range
turn out to be the most efficient location and scale estimator, respectively. The
R-estimator is not at all competitive, although in SPC the range control chart
based on the R-statistic is much more popular to monitor the standard deviation

than the standard deviation control chart, based on the S-statistic.

2.2 The sampling distribution

In order to get information about the sampling distribution of the previous
location and scale statistics M = X, TMd, R and TR, here generically denoted
by W, we generated 50,000 values of each of the statistics W, for sample sizes
n = 5,10, and some distributions of X belonging to the set D. We simulated their
density sampling distribution, and we estimated the tail-weight, 7, defined in (2.5),
and the asymmetry through the use of the Pearson and of the Bowley skewness

coefficients, v and vp, defined in (2.6) and (2.7), respectively.

Definition 2.4. The Fisher skewness coefficient of a distribution F', here denoted

v, is given by

m
Y= 3_?23 (26)

Ha
where u, denotes the r-th central moment of F; the Bowley skewness coefficient

(also denoted quartile skewness coefficient), here denoted g, is given by

_(F(0.75) — FE(0.5)) — (F*(0.5) — F*(0.25))
B = F<(0.75) — F<(0.25) ‘ (2.7)




The obtained estimates of the parameters 7, v and g, and of the quantiles

Xp = F(p), p = 0.1%, 1%, 25%, 50%, 75%,99% and 99.9%, of the sampling distri-

bution of the statistics under study, are presented in Tables 3-6. In Figures 3-6 we

present some of histograms associated to these simulated sampling distributions.

Table 3: Estimates of 7, 7, VB, X0.1%> X1%> X25%> X50%> X75%: X99%> X99.9%:

for the M sampling distribution and sample sizes n = 5, 10.

F no 7T %Y YB  X01% X1% X25% X50% X75% X99% X99.9%
N(0,1) 5 1.00 0.01 0.00 -1.398 -1.039 -0.302 -0.001 0.297 1.046 1.410
10 0.99 -0.01 0.00 -0.977 -0.733 -0.217 -0.001 0.212 0.734  0.962
Log(0,1) 5 1.06 -0.02 -0.02 -2.677 -1.966 -0.538 0.004 0.531 1.927  2.696
10 1.03 0.01 0.01 -1.827 -1.350 -0.378 0.001 0.387 1.365 1.824
t3 5 1.33 -1.07 0.00 -2.120 -1.122 -0.247 -0.003 0.243 1.133  2.397
10 1.21 -0.34 0.00 -1.408 -0.773 -0.185 -0.000 0.185 0.777 1.410
ts 5 1.11 0.04 0.00 -1.577 -1.097 -0.287 -0.002 0.284 1.093 1.561
10 1.06 0.03 0.00 -1.091 -0.753 -0.205 0.000 0.207 0.760 1.086
tio 5 1.05 -0.02 0.00 -1.456 -1.071 -0.288 0.007 0.300 1.061  1.485
10 1.02 0.01 0.00 -1.004 -0.734 -0.210 0.000 0.209 0.743  1.042
CN(1%) 5 1.03 0.02 -0.01 -1.582 -1.090 -0.312 0.000 0.305 1.099 1.576
10 1.00 -0.02 0.00 -0.968 -0.746 -0.212 0.002 0.216 0.731 0.975
CN(5%) 5 1.14 -0.02 0.01 -2.025 -1.316 -0.331 0.001 0.336 1.309  1.942
10 0.99 -0.01 0.01 -0.999 -0.737 -0.213 0.000 0.215 0.731 0.975
CN(10%) 5 1.21 0.00 -0.01 -2.370 -1.523 -0.373 -0.007 0.355 1.526  2.235
10 0.99 0.00 0.00 -0.957 -0.736 -0.214 0.000 0.214 0.733  0.964

From the values in Table 3 we observe that the sampling distribution of the

M-statistic is approximately symmetric for the models under study, except for the

ts3 distribution; in this case we obtained a negative skewed sampling distribution,

but its central part is symmetric as we conclude from the obtained quartile skewness

coefficient, yg ~ 0, and from the histogram of the simulated density function.
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When we consider underlying models F' with small tail-weight, such as the
normal, the logistic, the ¢;0 and the CN(1%) model, the sampling distribution of
M presents the same tail-weight as the normal distribution; for distributions F' with
moderate-to-heavy tails, such as the t3, the t5, the CN(5%) and the CN(10%), the
sampling distribution of M has tails heavier than the normal tail, but not so heavy
as the tails of the underlying distribution, and this tail-weight decreases as the
sample size n increases. For non-normal models the obtained lower quantiles of
the sampling distribution of M, x¢.1% and X1y, are smaller than the corresponding
quantiles obtained in the normal case, and the upper quantiles, x99 and xg9.9%, are
larger than the corresponding normal quantiles. This reveals the weak robustness
of the M statistic to changes in the underlying model, principally for small values of
n. Finally, the interval of variation of the sampling distribution of the M statistic
for non-normal data is larger than in the normal case, but the interquartile range
is almost the same for all the distributions; thus, the significant differences between
the several sampling distributions are in the tails, and this fact is very important
when we are interested in the estimation of high quantiles, as usually happens in
Statistical Quality Control, for instance.

From Table 4 we note that the sampling distribution of the T M d-statistic is
symmetric for all the models under study, even when we consider heavy-tailed
underlying models F, such as the t3 and the CN(10%), for instance. Thus, the
chance of having an extreme value from the 7'M d sampling distribution is smaller
than the chance of obtaining it from the M sampling distribution. For large sample
sizes of contaminated normal data, say n = 10, the lower and the upper quantiles
of the T'Md distribution are similar to the corresponding normal quantiles, but for
n = 5 there are significant differences; thus we do not advise the use of the T'Md
statistic in SPC for very small values of n, when there is some possibility of having
contaminated normal data. For the logistic model the interval of variation of the
sampling distribution of the T'Md statistic is larger than in the normal case, as
well as the interquartile range, and we have the opposite situation for Student-t
models; even so, the differences to the normal case are smaller when we consider
the T Md instead of the M statistic. Some of these conclusions can be observed

from the histograms presented in Figures 3-6.
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Table 4: Estimates of 7, 7, VB, X0.1%> X1%> X25%> X50%> X75%; X99%> X99.9%:

for the TMd sampling distribution and sample sizes n = 5, 10.

F no T Y YB  X01% X1% X25% X50% X75% X99% X99.9%

N(0,1) 5 1.01 0.01 0.00 -1.445 -1.080 -0.312 0.000 0.310 1.088  1.457

10 1.00 0.00 0.00 -1.044 -0.797 -0.231 0.000 0.229 0.791 1.055

Log(0,1) 5 1.06 -0.01 -0.01 -2.613 -1.929 -0.528 0.001 0.525 1.890 2.638

10 1.02 0.01 0.02 -1.810 -1.330 -0.374 -0.003 0.379 1.329 1.850

i3 5 1.18 -0.04 0.00 -1.405 -0.892 -0.221 -0.002 0.219 0.900 1.466

10 1.05 0.00 0.00 -0.781 -0.556 -0.154 0.000 0.154 0.560 0.790

ts 5 1.08 0.00 0.00 -1.378 -1.014 -0.276 0.000 0.270 1.014 1.415

10 1.04 -0.01 0.00 -0.960 -0.692 -0.192 0.000 0.192 0.689  0.956

tio 5 1.06 -0.02 -0.01 -1.454 -1.067 -0.288 0.007 0.297 1.052 1.432

10 1.01 0.02 0.00 -1.006 -0.738 -0.214 0.001 0.213 0.756  1.007

CN(1%) 5 1.01 0.01 -0.01 -1.489 -1.100 -0.321 0.000 0.313 1.105 1.498

10 1.01 -0.02 -0.01 -1.052 -0.805 -0.228 0.004 0.232 0.792 1.052

CN(5%) 5 1.03 -0.01 0.01 -1.686 -1.183 -0.328 0.000 0.335 1.179 1.633

10 0.99 0.00 0.01 -1.050 -0.790 -0.229 0.000 0.231 0.784 1.052

CN(10%) 5 1.07 -0.02 0.00 -1.879 -1.297 -0.357 -0.001 0.341 1.276  1.887

10 1.00 -0.01 0.01 -1.052 -0.793 -0.229 0.000 0.232 0.795 1.030

From Tables 5-6 we note that the sampling distributions of the R and of the TR
statistics are highly positive skewed, even in the normal case. For contaminated
normal models with a high percentage of contamination, CN(5%) and CN(10%),
and for the Student-t models, t3 and ¢5, the sampling distributions of R and TR
are heavy tailed, with high positive skewness, and present some asymmetry even
in the central part of the distribution, as it is indicated by the obtained value of
quartile skewness coefficient, yg. However, the distribution of the TR statistic is
less asymmetric than the distribution of the R statistic, with a not so long right tail.

In all the cases the skewness as well as the tail-weight decrease with the increase
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of the sample size n, and we thus advise the use of the TR statistic for large
sample sizes. These conclusions are easily observed from the histograms presented

in Figures 3-6.

Table 5: Estimates of 7, 7, VB, X0.1%> X1%> X25%: X50%> X75%: X99%> X99.9%:

for the R sampling distribution and sample sizes n = 5, 10.

F no 7T Y YB  X01% X1% X25% X50% X75% X99% X99.9%

N(0,1) 5 0.97 0.48 0.06 0.351 0.663 1.699 2.252 2.875 4.628 5.542

10 1.00 0.39 0.04 1.057 1.459 2.513 3.028 3.582 5.151  5.985

Log(0,1) 5 1.02 0.87 0.10 0.584 1.113 2.880 3.912 5.173 9.365 12.058

10 1.03 0.81 0.09 1.782 2.452 4.365 5.414 6.679 10.825 13.399

t3 5 1.39 7.55 0.17 0.248 0.453 1.223 1.738 2.463 6.901 14.763

10 1.42 5.65 0.19 0.737 0.999 1.926 2.532 3.417 8971 16.812

ts 5 1.15 2.03 0.13 0.323 0.560 1.494 2.049 2.773 5.842  8.579

10 1.16 1.81 0.12 0.915 1.250 2.284 2.887 3.662 6.981 10.203

t10 5 1.04 0.85 0.08 0.350 0.617 1.614 2.183 2.851 5.124  6.592

10 1.07 0.86 0.08 1.011 1.382 2.434 2995 3.657 5.957 7.632

CN(1%) 5 1.08 1.19 0.06 0.351 0.664 1.719 2.289 2.927 5.204 8.039

10 0.98 0.38 0.04 1.080 1.473 2.514 3.028 3.591 5.133  5.922

CN(5%) 5 1.38 1.82 0.10 0.387 0.707 1.793 2413 3.164 7.477 10.383

10 0.99 0.39 0.05 1.059 1.470 2.515 3.026 3.589 5.156  5.974

CN(10%) 5 1.30 1.68 0.16 0.400 0.723 1.901 2.585 3.536 8.516 11.470

10 0.99 0.38 0.05 1.075 1.464 2.515 3.027 3.589 5.144 5.973
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Table 6: Estimates of 7, 7, VB, X0.1%, X1%> X25%> X50%> X75%; X99%> X99.9%:

for the TR sampling distribution and sample sizes n = 5, 10.

F no T Y YB  X01% X1% X25% X50% X75% X99% X99.9%

N(0,1) 5 0.95 0.43 0.05 0.273 0.519 1.321 1.749 2.223 3.507 4.143

10 0.99 0.28 0.02 0.924 1.277 2.164 2.583 3.023 4.219  4.830

Log(0,1) 5 1.01 0.77 0.09 0.456 0.871 2.242 3.021 3.964 6.956  8.869

10 1.02 0.66 0.08 1.584 2.128 3.732 4.560 5.531 8.539 10.326

ts3 5 1.34 6.75 0.16 0.193 0.352 0.947 1.336 1.869 4.918 10.139

10 1.37 4.81 0.16 0.639 0.861 1.628 2.097 2.747 6.540 11.535

ts 5 1.12 1.75 0.11 0.256 0.439 1.158 1.586 2.122 4.284  6.204

10 1.12 1.44 0.10 0.816 1.086 1.944 2.422 3.006 5.317  7.523

tio 5 1.02 0.74 0.07 0.266 0.484 1.259 1.693 2.196 3.816  4.841

10 1.04 0.66 0.06 0.889 1.197 2.080 2.533 3.044 4.684  5.848

CN(1%) 5 1.05 1.00 0.06 0.282 0.524 1.339 1.775 2.264 3.910 5.808

10 0.98 0.27 0.02 0.946 1.283 1.163 2.585 3.025 4.199 4.753

CN(5%) 5 1.31 1.59 0.10 0.307 0.551 1.401 1.871 2.440 5.420 7.326

10 0.98 0.27 0.03 0.939 1.276 2.167 2.584 3.029 4.209 4.801

CN(10%) 5 1.25 1.52 0.15 0.318 0.562 1.477 2.000 2.711 6.157  8.100

10 0.98 0.27 0.03 0.937 1.280 2.163 2.583 3.029 4.198 4.859
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The histograms in Figures 3-6 confirm the symmetry of the sampling distribu-
tions of M and T'Md, and the visible asymmetry of the distributions of R and TR,
principally for small samples. The increase of the sample size leads us, in some
cases, to a quasi-symmetric distribution (see Figures 3 and 6); for the logistic and
the CN(10%) data, the distribution of TR is less asymmetric than the distribution
of R; for t5 data the distribution of the TR presents high asymmetry, even for large

sample sizes, although smaller than the asymmetry of the distribution of R.
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3 Control charts and simulation results

Whenever implementing a control chart, a practical advice is that a control chart
with 3-0 control limits must be avoided if the distribution of the control statistic is
very asymmetric; in this case it is preferable to fix the control limits of the chart at
probability quantiles of the control statistic distribution. However, the analytical
determination of these quantiles is in general impossible to obtain, as well as its
estimation, because we do not have sufficient observations for doing it accurately.

The results presented in Subsection 2.2 justify the use, in this study, of two-
-sided control charts with 3-sigma control limits to monitor the process mean value
at a target po. Thus, to detect increases or decreases in the process mean value p,
we implement the M-chart with control limits given in (1.2), and the TMd chart

with lower and upper control limits given by
LCLyyg = E(TMd)—3\/V(TMd), UCLyyg= E(TMd)+3\/V(TMd). (3.1)
For standard normal data the limits of the 7'M d-chart are given by
LCLyya = —3dsrma;, UCLrang = 3ds,ma, (3.2)

where ds 74 is the tabulated constant presented in Table 2.

To monitor the process standard deviation at a target oy, and noting that the
main interest is to detect increases in ¢ and not decreases in o, we implement
in this study one-sided control charts, more specifically, the R-chart with upper

control limit given in (1.3), and the TR chart with upper control limit given by
UCLrg = E(TR) + 3\/V(TR). (3.3)
For standard normal data the upper control limit of the R-chart is given by
UCLrma = do, R + 3ds, TR, (34)

where dy 7R and d3 g are the tabulated constants presented in Table 2.

3.1 Robustness versus performance

The ability of a generic W control chart to detect process changes is usually mea-

sured by the expected number of samples taken before the chart signals, i.e., by its
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ARL (Average Run Length), or alternatively in some cases by its power function,

together with the standard deviation of the Run Length distribution, SDRL.

Definition 3.1. When the successive values of the control statistic W are indepen-
dent, and when we do not have to estimate the control limits of the chart, the RL
variable (i.e., the number of samples taken before the chart signals) has a geometric

distribution, and the ARL is given by

1 1
ARLyO) = T—pavecie — 7@ (3:5)

where 6 denotes the parameter to be controlled at 0 = 6y, with ©,, (6) the power

function of the W-chart. The SDRL is given by

_ J/P(WeC0)
SDRL,, (6) = 72 PAT €T} (3.6)

Remark 3.1. Assuming that the process changes from the in-control state, 8 = 6y,
to an out-of-control state, 8, a value in the space parameter, the power function of

the chart is the probability of detection of that change in any arbitrary sample.

Definition 3.2. When the process is in-control, the power function gives us the

false alarm rate of the chart, also called the a-risk, given by
a=P(W¢C|IN)=P(W ¢C|0=20). (3.7

Remark 3.2. The control limits of a W-chart are usually determined in order to
have a chart with a small fized false alarm rate (a large in-control ARL) and we
hope to obtain high power function values (small out-of-control ARL) for the shifts

the chart must detect.

Remark 3.3. When we have to estimate some process parameters to determine the
control limits of the chart, or if the successive values of the control statistic W are
not independent, the RL variable has not anymore a geometric distribution, but a
more right-skewed distribution, and the false alarm rate of the chart is not anymore
equal to the reciprocal of the in-control ARL. Some authors, see Chakraborti (2006,
2007) for instance, refer that in this case the ARL and the SDRL parameters are
not the best measures of performance of a control chart, due the high asymmetry

of the RL distribution, and one might prefer the use of the Median Run Length,
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MRL, as a measure performance, and the 5th and the 95th percentiles of the RL
distribution to represent the spread of the RL. Additionally, for a more complete
understanding of the chart performance, Chakraborti (2000, 2006, 2007) and Jensen
et al. (2006), for instance, state that we must analyze the conditional RL distribu-
tion, i.e., the RL distribution conditional on the observed estimates, together with
the analysis of the marginal RL distribution. Such a marginal distribution is com-
puted by integrating the conditional RL distribution over the range of the parameter
estimators and takes thus into account the random variability introduced into the
charting procedure through parameter estimation without requiring the knowledge of
the observed estimates. Further details about measures of performance of control
charts can be found, for instance, in Chakraborti (2000, 2006, 2007) and in Jensen
et al. (2006).

In the following study, to analyze the robustness of the previous control charts

to the normality assumption, implemented with exact control limits,

1. we consider, to describe the data process, standardized data of the symmetric

distributions in set D (see Subsection 2.2);

2. we implement the charts with the control limits given in (1.2), (1.3), (3.2)

and (3.4), for sample sizes n = 5, 10;

3. we compute the false alarm rates, a, defined in (3.7), by Monte Carlo simu-
lation techniques, using a sample of 500,000 values of the control statistic for
each of the 30 replicates of the simulation experiment; this procedure allows
us to present the « values with a precision of 4 decimal figures; finally, we

compare them with the expected value aq, obtained for normal data.

The obtained simulated false alarm rates are presented in Tables 7-8 for sample
sizes n = 5, 10; in each line we underline the a-value associated to the most robust
chart. While the X-chart is non-robust to the normality assumption, the TMd
chart for n = 5 is quasi-robust, except for contaminated normal distributions; the
T R-chart cannot be considered robust, but even so, it is more robust than the
R-chart. The worst results are obtained when we consider contaminated normal
data. Indeed, when there is a chance of having this distributional situation it is

better to implement the T'Md and the TR charts for sample sizes n = 10.
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Table 7: False Alarm rates of the X and TMd charts.

Model F 7 Xpes TMdp—s  Xnewo TMdp_io
N(0,1)  1.00  .00270  .00272 00269 .00272
to 115 .00392  .00265 00333 .00179
Log(0,1) 121  .00430  .00263 00364 .00154
ts 134 00655  .00245 00508 .00095
ts 172 01063  .00187 00912 00019
CN(1%) 1.03  .00540  .00336 00478 00302
CN(%) 120  .01198  .00591 01018 .00429
CN(10%) 154  .01543  .00845 01347 00589

Table 8: False Alarm rates of the R and T'R charts.

Model F' T R,—5s TRu—; Ry—10 TRp=10
N(0,)  1.00 00452 .00402  .00423 .00315
tio 1.15 .01327  .01090 .01965  .01392
Log(0,1) 1.21 .01523 .01232 .02320 .01620
ts 1.34 .02439  .02010 .04134  .03007
ts 1.72 .03197  .02651 05725  .04191
CN(1%) 103 01397 01249 02175 01784
CN(5%) 1.20 .03904  .03498 06734  .05661
CN(10%) 1.54 .05352  .04811 .09268 .07934

The analysis of the performance of the previous charts to detect changes in the

process parameters is evaluated in terms of the obtained power function values of

the chart, defined in (3.5) for some different magnitude changes.

The obtained simulated power function values are presented in Tables 9-10 for
sample size n = 10; for every magnitude of change and each model, we underline
the highest obtained value, which corresponds to the most powerful chart. These

results lead us to the following conclusions: the TMd (and the T R) chart is more
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robust than the X (and the R) chart, with smaller false alarm rates; when the
tails of the underlying model become heavier, the TMd (and the TR) chart is
able to overpass the X (and the R) chart in terms of performance to detect large
changes. The conclusions are similar for n = 5, although we obtain larger power
function values when we consider n = 10, i.e., the charts implemented for sample

sizes n = 10 are able to detect the occurred changes more quickly.

Table 9: Power function values of the charts (n = 10, 4 — puq, 0 = 1).

w X TMd X TMd X TMd X TMd
N(u1,1) t3 t5 10
0.5 .0780 .0629 0625 .0148 .0749 .0372 0771 .0513
1 .5646 .4750 D758 4622 5672 .4700 25652 4731
2 29996 9980 9971 .9999 9988  .9993 29994 9987
2.5 1.000 1.000 29993 1.000 29999  1.000 1.000 1.000
3 1.000 1.000 29998  1.000 1.000 1.000 1.000 1.000
Log(p1,1) CN(1%) CN(5%) CN(10%)
0.5 .0771 .0471 0841 .0642 1010 .0702 1122 0767
1 .5654 .4725 5630 .4753 .5591  .4755 D561 .4767
2 29993 .9988 29990 .9978 29975 9969 29966 .9959
2.5 .9999 1.000 -9999  .9999 9999 .9999 29999  1.000
3 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 10: Power function values of the charts (n = 10, p =0, 0 — 01).

o1 R TR R TR R TR R TR

N(0,01) t3 ts t10
1.25 .0616 .0647 1199 .0984 1227 .1081 .0971 .0910
1.5 2277 2557 .2087 .1869 2542  .2491 2510  .2614
2 .6458 .6965 4307 4258 .5646  .5883 .6162 .6549
2.5 8730 .9023 .6409 .6546 7903 .8181 .8426 .8720
3 9564 .9688 7924 8119 9071 .9255 9395  .9546

Log(0,01) CN(1%) CN(5%) CN(10%)
1.25 .1075 .0987 .0904 .0925 1734 1739 2320 .2334
1.5 2621  .2673 .2589  .2861 3519 3778 4235 .4497
2 6122 .6447 6636 .7120 7185 .7603 7629  .7998
2.5 8330 .8608 8799 .9076 9016 .9246 9194 9387

3 9327 9482 9588  .9706 9666 .9763 9731 9810

4 Monitoring a cork process production

For monitoring on-line a cork stopper’s process production, more precisely, the
cork stoppers caliber 45 mm x 24 mm, we have implemented control charts with
estimated control limits for sample size n = 10, in order to monitor the process
mean value and the process standard deviation. The corks must have a target
mean length o ; = 45 mm, with a tolerance interval of 45 £ 1 (mm), and a target
mean diameter puo p = 24 mm, with a tolerance interval of 24 + 0.5 (mm).

To estimate the control limits of the charts used to monitor this process pro-
duction, here denoted by M, M*, TMd, R, R* and TR charts, we carry out the

following procedure:

1. we consider m = 25 and m = 50 initial subgroups of size n = 10, taken when

the process is considered stable and I N-control;

2. from these initial subgroups we compute m partial estimates (j = 1,--- ,m)

of the interest parameters, here denoted pg and og, through the use of the
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T Md and TR estimators as well as the use of the usual estimators, the sample
mean X and the sample range R; to obtain unbiased partial estimates, G0,
whenever the underlying model is normal, we divide the statistics R and
TR by its mean values, d» and dy 7R, respectively, whenever the underlying
model is normal, given in Table 2; we also compute estimates of E(T'Md),
E(TR), V(TMd) and V(TR);

3. then, we compute overall estimates to be used in the control limits, presented

in Table 11, by averaging the estimates obtained in step 2.

Table 11: Implemented control charts for monitoring the cork’s process

production, for sample sizes n = 10, and m = 25, 50.

Chart Control limits Parameters’ estimates
A Po=k 5%,
M fio £ 322 I
\/_ N m
" 00 = % 2 R; /do
j=1
m
» fiy = & 3 TMdj =TMd
M fig £330 it
\/_ N m
! G5 = & > TRj/daTr
=1
——— m
E(TMd) =L Y TMd;
TMd E(TMd) + 31/ V(T Md) o = )
VITMd) = ;15 3. (TMd; — Td)
j=1
R R + 3ds5o 0o = % > Rj/d>
j=1
— —~ 1 m
R* R+ 3d35} G5 = 7 > TRj/daTR

TR E(TR) + 3\/V(TR) o 1j:1 ,

We note that the M and the M* charts have the same control statistic, X,
but we have considered different estimates for the targets, the usual ones or robust
estimates to determine the control limits; the same happens with the R and the
R* charts that have the same control statistic, R, but different upper control limit.
The statistic R that appears in the control limit of the R and of the R* charts
corresponds to the average of the sample ranges of the m initial subgroups, and the
constant d3 denotes the standard deviation of R whenever the underlying model is

normal. As already mentioned, its value is given in Table 2.
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For the study we have considered a sample of the cork’s length and the cork’s
diameter values, of size 1250; the first 750 values of the sample were used to es-
timate the control limits of the charts, and the remaining 500 values were used
to implement the charts and to analyze its robustness. Here we only present the
results of the analysis of the cork’s length dataset, which are similar to the ones

obtained for the cork’s diameter.

After a brief exploratory data analysis of the cork’s length dataset we conclude
that all the length’s data are within the tolerance interval fixed by the production
director. The shape of the histograms associated to the data of the initial subgroups
(datasets of size m x n = 25 x 10 = 250 and m x n = 50 x 10 = 500) used to
estimate the control limits of the charts suggest we are working with non-normal
data, and the same conclusion is suggested by the Q-Q normal plots, that present
several points outside the straight line. In order to confirm or to deny the previous
conclusion, we apply a Shapiro-Wilk normality test to these subgroup datasets,
and we estimate the tail-weight and the asymmetry of the underlying distribution.
Thus, we do not reject the normality of the data of the m = 25 initial subgroups
(for which we got a p-value=0.165 and a small value for the estimate of the Fisher
skewness coefficient in (2.6), v = 0.097), but we reject the normality of the data of
the m = 50 initial subgroups (for which we got a p-value=0.003 and a large value
for the estimate of the skewness coefficient, v = 0.317). For both datasets we got
an estimated tail-weight, given in (2.5), less than 1 and equal to 7 = 0.636 and
7 = 0.538, respectively; therefore we conclude that the normal distribution present
heavier tails than the tails of the underlying process distribution.

In Figures 7-8 we present the charts implemented to monitor the cork’s length.
We remember that all of the observations used to calculate the points represented in
these charts are within the tolerance intervals, and thus any point that falls outside
the control limits of the charts is associated to a false alarm. From these figures we
observe that there is no significant difference between the M and the M™ charts,
and well as between the R and the R* charts; thus, for these initial subgroups
datasets there is no benefit of using a robust estimate for the targets instead of the
usual ones. Note that these subgroups of data are very homogeneous, with all of the
observations between the too-tight tolerance interval, and the standard deviation

of the cork’s length in each subgroup is very small.
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The M and the T'Md charts as well as the R and the T'R charts represented
in Figure 7 do not differ significantly, although we note that the control limits of
these charts were estimated through the use of a small number of initial subgroups
(m = 25) with approximately normal data. Relatively to the charts represented
in Figure 8 we observe that the TMd and the TR charts are more robust than
the X and the R charts. The X charts present several points associated to false
alarms, which does not happen with the T'Md chart, and the points represented in
the usual control charts are closer to the control limits than in the robust control
charts. In this case the control limits of these charts were estimated through the
use of a larger number of initial subgroups (m = 50) with non-normal skewed data,

a different framework from the one associated to the implementation of the charts

in Figure 7.
45,2 45,2
1 1 } N
45,0 I\ A AVAVA A . .v/\[\_/ 45,0 A R A/\VA A . A /\I\/
P e S ™ e
448 448
44,6 - | 44 : w
0 25 50 0 25 50
Y M* — TMd
151 1,5
1,0 1,0
05 - 0,5 J\‘/\/\_/L\/A/\/V/\[\/\/\/\
0,0 + ‘ |00 : ‘
0 25 50 0 25 50
— R — R~ — TR

Figure 7: Charts to monitor the cork stopper’s length, n = 10 and m = 25.
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Figure 8: Charts to monitor the cork stopper’s length, n = 10 and m = 50.

From this study we can draw the following overall conclusions: the usual X and
R charts to monitor non-normal data present simulated alarm rates very different
from the expected values, i.e., the non-normality of the underlying data process
can have a significant effect on the performance of the charts, and therefore their
use deserves careful attention. The use of robust control charts based on the total
median and on the total range statistics, for instance, instead of the traditional
sample mean and sample range control charts, implemented for moderate samples
(say, n = 10), can be an adequate alternative to monitor non-normal data. When
we have to estimate the control limits of the charts we advise the use of a large
number of initial subgroups for the estimation (say m = 50, at least) together with
the use of robust estimators, in order to obtain adequate estimates even when we

have some outliers or contaminated data in the initial subgroups.
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