
1On extremal dependene: some ontributionsMarta Ferreira Department of Mathematis, University of Minho, Braga, PortugalHelena Ferreira Department of Mathematis, University of Beira Interior, Covilhã, PortugalAbstrat: The usual oe�ients of tail dependene are based on exeedanes of high values but otherextremal events as uprossings an also be used and provide useful information. In this ontext we de�neuprossings tail dependene oe�ients and analyze all types of dependene oming out. These oe�ientsare related with multivariate oe�ients of tail dependene. Connetions with measures of temporal depen-dene as the extremal index and the uprossings index, as well as, with some loal dependene onditionswill be stated. Several illustrative examples will be exploited and a small note on inferene will be given.Keywords: Extreme values, measures of tail dependene, asymptoti independene.1 IntrodutionMeasures to quantify the extremal dependene of a random pair (X, Y ) started to appear in liter-ature around the deade of 50. One natural measure is the so alled �tail dependene oe�ient",
λ = lim

x→xF

P (Y > x|X > x)where xF is the upper limit of the support of the ommon marginal distribution F , provided thelimit exists. Loosely stated, λ is the probability of one variable being extreme given that theother is extreme. In the ase, λ = 0, the variables are said to be asymptotially independentand if, 0 < λ ≤ 1, they are asymptotially dependent. Observe that, the boundary ases oftotal dependene and total independene orresponds, respetively, to λ = 1 and λ ∼ P (Y > x).The importane of this lass was reognized as far bak as Ge�roy [14℄ (1958/59), Sibuya [22℄(1960), Tiago de Oliveira [25℄ (1962/63) and Mardia [20℄ (1964). Coe�ient λ is generalized tothe ase of X and Y non-identially distributed, with marginal d.f., respetively, FX and FY , bytransformation to Uniform margins, FX(X) and FY (Y ), and setting,
λ = lim

u↑1
P (FY (Y ) > u|FX(X) > u). (1)In order to graduate the �strength" of dependene in the ase of asymptoti tail independene(λ = 0), Ledford and Tawn [18, 19℄ (1996, 1997) have onsidered the following formulation thatstates the rate of onvergene towards zero:

P (X > x, Y > x) ∼ P (X > x)1/ηX,Y L⋆
ηX,Y

(1/P (X > x)), as x → xF (2)where L⋆
ηX,Y

is a slowly varying funtion at ∞, i.e., L⋆
ηX,Y

(tx)/L⋆
ηX,Y

(x) → 1 as x → ∞ for any�xed t > 0, and ηX,Y ∈ (0, 1] is the �Ledford and Tawn oe�ient". The oe�ient ηX,Y desribesthe type of limiting dependene between X and Y , and L(t) its relative strength given a partiularvalue of ηX,Y . Observe that equation (2) an also be expressed as
P (Y > x|X > x) ∼ P (X > x)1/ηX,Y −1L⋆

ηX,Y
(1/P (X > x)), as x → xFshowing how λ hanges with ηX,Y . Whenever ηX,Y = 1 and L⋆

ηX,Y
(x) → a as x → ∞ for some

0 < a ≤ 1, r.v.'s X and Y are asymptotially dependent with total dependene ourring if
a = 1. The random pair is asymptotially independent when either ηX,Y < 1 or when ηX,Y = 1with L⋆

ηX,Y
(x) → 0 as x → ∞. The ase ηX,Y > 1/2 orresponds to positive extremal dependene,
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ηX,Y < 1/2 to negative dependene and ηX,Y = 1/2 to (almost) independene (perfet independeneif L⋆

ηX,Y
(x) = 1). We an also generalize to the ase of X and Y non-identially distributed, withmarginal d.f., respetively, FX and FY , by transformation to Uniform margins. For onvenienewe take regular variation at point 0. More preisely,

P (FX(X) > 1 − t, FY (Y ) > 1 − t) ∼ t1/ηX,Y LηX,Y (t), as t ↓ 0 (3)where and LηX,Y (t) is a slowly varying funtion at 0.Observe that all these measures onern tail dependene based on extremal events of the type
{X1 > x} for large x, i.e. an exeedane of a high level x. Another extremal event of interest is theuprossing of a high level x, {X1 ≤ x < X2}. In an analogous way, we will state tail dependenemeasures based on these latter. These new oe�ients are related with the multivariate taildependene oe�ients de�ned in Shmidt and Stadtmüller [23℄, 2006 or in Ferreira [12℄, 2008, aswell as, with a multivariate formulation of the oe�ient of Ledford and Tawn (Setion 2).In Setion 3 we will see straight onnetions between tail dependene oe�ients and loaldependene onditions, D′ (Leadbetter et al. [16℄) and D′′ (Leadbetter and Nandagopalan [17℄),as well as, with the extremal index and the uprossings index (Ferreira [11℄). Setion 4 is devotedto several examples illustrating the previous results, inluding the well-known M4 proesses andExtended M4 proesses (EM4) (He�ernan et al. [15℄ 2007). We also look at the sequene oflevels persisting in time, whih was inspired by the modeling of tidal that persist for suessivetime instants, under independent levels and under max-autoregressive dependene (Draisma [7℄;Ferreira and Canto e Castro [10℄). We end with some notes on estimation of the new oe�ientsin Setion 5.2 Tail dependene through uprossingsLet (X1, Y1) and (X2, Y2) be two random pairs identially distributed as (X, Y ), whih has ommonmarginal d.f. F . As already mentioned, the usual tail dependene measures are based on theextremal events �exeedanes" by eah margin. In an analogous way, we an state tail dependenemeasures based on uprossings. More preisely, similar to the tail dependene oe�ient λ in (1),we onsider the uprossings tail dependene oe�ients,

µY |X = lim
x→xF

P (Y1 ≤ x < Y2|X1 ≤ x < X2)and
µX|Y = lim

x→xF

P (X1 ≤ x < X2|Y1 ≤ x < Y2).
(4)provided the limits exist.The boundary ases of total uprossings dependene and total uprossings independene be-tween events {Y1 ≤ x < Y2} and {X1 ≤ x < X2} orresponds to, respetively, µY |X = µX|Y = 1,and µY |X ∼ P (Y1 ≤ x < Y2) and µX|Y ∼ P (X1 ≤ x < X2).We an also state oe�ients µY |X and µX|Y generalized to the ase of random pairs (Xj , Yj) (j =

1, 2) with marginal d.f., respetively, FX and FY . Considering, for instane, µY |X, by transformationto Uniform margins, FX(Xj) and FY (Yj), we have,
µY |X = lim

u↑1
P (FY (Y1) ≤ u < FY (Y2)|FX(X1) ≤ u < FX(X2)). (5)In order to distinguish oe�ient λ from oe�ients µY |X and µX|Y , onerning the tail depen-dene, we give the following de�nitions.De�nition 2.1 A random pair (X, Y ) is alled asymptoti exeedanes-tail independent if λ = 0in (1) and exeedanes-tail dependent otherwise.



3De�nition 2.2 Random pairs (X1, Y1) and (X2, Y2) are alled asymptoti uprossings-tail inde-pendent if µY |X = 0 or µX|Y = 0 in (5) and uprossings-tail dependent otherwise.Next we relate oe�ients µY |X and µX|Y with the more general multivariate tail dependeneoe�ient (Shmidt and Stadtmüller [23℄, 2006; Ferreira [12℄, 2008),
λXI ,YJ |XL,YK

= lim
u↑1

P

( ⋂

i∈I,j∈J

{FX(Xi) > u, FY (Yj) > u}

∣∣∣∣
⋂

l∈L,k∈K

{FX(Xl) > u, FY (Yk) > u}

) (6)for non empty sets I, J, L, K ⊂ {1, ..., n}.Proposition 2.1 Coe�ient µY |X given in (5) an be stated as
µY |X = (1 − λ(X))−1

[
λ − λ(Y ) λX{2}|Y{1,2}

− λ(X) λY{2}|X{1,2}
+ λ λX{2},Y{2}|X{1},Y{1}

]
, (7)where λ ≡ λY{2}|X{2}

= λY{1}|X{1}
, λ(X) ≡ λX{2}|X{1}

and λ(Y ) ≡ λY{2}|Y{1}
, provided the existeneof these limits and λ(X) 6= 1.Proof. Observe that,

P (FY (Y1) ≤ u < FY (Y2), FX(X1) ≤ u < FX(X2))

= P (FX(X2) > u, FY (Y2) > u)

−P (FX(X2) > u, FY (Y2) > u, FY (Y1) > u)

−P (FX(X2) > u, FY (Y2) > u, FX(X1) > u)

+P (FX(X2) > u, FY (Y2) > u, FY (Y1) > u, FX(X1) > u)

= P (FY (Y2) > u|FX(X2) > u)P (FX(X2) > u)

−P (FX(X2) > u|FY (Y2) > u, FY (Y1) > u)P (FY (Y2) > u|FY (Y1) > u)P (FY (Y1) > u)

−P (FY (Y2) > u|FX(X2) > u, FX(X1) > u)P (FX(X2) > u|FX(X1) > u)P (FX(X1) > u)

+P (FY (Y2) > u, FX(X2) > u|FX(X1) > u, FY (Y1) > u)·

·P (FY (Y1) > u|FX(X1) > u)P (FX(X1) > u)

(8)
and that
P (FX(X1) ≤ u < FX(X2))=P (FX(X2) > u) − P (FX(X2) > u, FX(X1) > u)

=P (FX(X2) > u) − P (FX(X2) > u|FX(X1) > u)P (FX(X1) > u)

∼ (1 − u)
[
1 − P (FX(X2) > u|FX(X1) > u)

]
(9)as u ↑ 1. Hene applying (6) we have (7). �Corollary 2.2 Under the onditions of Proposition 2.1, if λ(X) 6= 1 and λ(Y ) 6= 1, then

(1 − λ(X))µY |X = (1 − λ(Y ))µX|Y .



4 Proposition 2.1 states a very interesting feature about µY |X (respetively, µX|Y by Corollary2.2), as this oe�ient ongregates both �temporal" and �spatial" dependene. We have temporaldependene measured by λ(X) and λ(Y ) for time series {Xi} and {Yi}, and �spatial" dependenemeasured by λY{i}|X{i}
for vetors (Xi, Yi). Moreover it also inludes the e�et of temporal depen-dene in a given �loation" into another by oe�ients λX{i}|Y{i,i−1}

and λY{i}|X{i,i−1}
, as well as,the e�et of �loation" dependene in time by oe�ient λX{2},Y{2}|X{1},Y{1}

.Remark 2.3 Events ⋂
ı∈I{FX(Xı) > u} in (6) an be replaed by minı∈I{FX(Xı) > u}. Hene themultivariate tail dependene oe�ient λXI ,YJ |XL,YK

is atually a bivariate one, as the originallyde�ned λ stated in (1), for random pairs (
min

i∈I,j∈J
{FX(Xi), FY (Yj)}, min

l∈L,k∈K
{FX(Xl), FY (Yk)}

).Obviously, the dependene between onseutive random pairs (X1, Y1) and (X2, Y2) plays arole. Observe that, if they are (asymptoti) independent (λ(Y ) = λ(Y ) = 0) then µX|Y = µY |X =
λ ≡ λY2|X2

≡ λY1|X1
, whih makes sense beause dependene only exists within eah random pair.By a similar proedure of Ledford and Tawn [18, 19℄ (1996, 1997), we onsider a formulationstating the onvergene rate of P (Y1 ≤ x < Y2, X1 ≤ x < X2) to 0, as x → xF , in order to graduatethe �strength" of dependene within asymptoti uprossings independene. More preisely,

P (X1 ≤ x < X2, Y1 ≤ x < Y2) ∼ P (X1 ≤ x < X2)
1/νY |X L⋆

νY |X
(1/P (X1 ≤ x < X2)), (10)as x → xF , where L⋆

νY |X
is a slowly varying funtion at∞, and the same onlusions for exeedanesonerning the Ledford and Tawn oe�ient ηX,Y , are derived. The oe�ient νY |X desribes thetype of limiting dependene between uprossings of Xi's and Yi's, and L⋆

νY |X
(x) its relative strengthgiven a partiular value of νY |X. Expressing equation (10) as

P (Y1 ≤ x < Y2|X1 ≤ x < X2) ∼ P (X1 ≤ x < X2)
1/νY |X−1L⋆

νY |X
(1/P (X1 ≤ x < X2)),we an also see how µY |X hanges with νY |X. When νY |X = 1 and L⋆

νY |X
(x) 6→ 0 as x → ∞ wehave asymptoti dependene of the uprossings (total dependene if L⋆

νY |X
(x) = 1), and asymptotiindependene otherwise. The ases νY |X > 1/2 and νY |X < 1/2 orrespond to, respetively, positiveand negative dependene, and νY |X = 1/2 an (almost) independene (perfet if L⋆

νY |X
(x) = 1).Similarly, we an also generalize to the ase of X and Y non-identially distributed, by onsidering

P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2))

∼ P (FX(X1) ≤ 1 − t < FX(X2))
1/νY |X LνY |X

(t),
(11)as t ↓ 0, where funtion LνY |X

(t) is slowly varying at 0.Remark 2.4 Observe that, under onditions of Corollary 2.2, in the ase of uprossings-tail depen-dene, µY |X and µX|Y might di�er (see Example 4.2) and within asymptoti uprossings extremalindependene, µY |X = µX|Y = 0. If we assume the ondition (2) of Ledford and Tawn for therandom pairs (X1, X2) and (Y1, Y2), the strength of dependene measured by oe�ient νY |X andrespetive slow varying funtion, stated in (11), will only hange on this latter one. It is easy tosee if we rewritten expression in (11) as
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2)) ∼ t1/νLν(t), as t ↓ 0,where in the last step we have applied (9) and (3), with slowly varying funtion Lν(t) = (1 −

t1/ηX1,X2−1LηX1,X2
(t))1/νY |X LνY |X

(t) or Lν(t) = (1 − t1/ηY1,Y2−1LηY1,Y2
(t))1/νX|Y LνX|Y

(t) and ν =
νY |X = νX|Y . Therefore, the onlusion about uprossings tail dependene or independene between
{FX(X1) ≤ u < FX(X2)} and {FY (Y1) ≤ u < FY (Y2)} do not hange, only the strength of



5dependene within the dependene ase or independene ase might di�er. Therefore, from now onwe onsider (11) with νY |X replaed by ν, i.e.,
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2))

∼ P (FX(X1) ≤ 1 − t < FX(X2))
1/νLν(t),

(12)with Lν(t) ≡ LνY |X
(t).Now we formulate a su�ient ondition for (12) throughout the η's oe�ients. By de�nition(3), 1/η is the regularly varying index of r.v. min(X, Y ). Hene, the following extension for sets

I, J ⊂ {1, ..., n},
P

(
min

i∈I,j∈J
(FX(Xi), FY (Yj)) > 1 − t

)
∼
t↓0

t1/ηXI ,YJ LXI ,YJ (t), (13)where LXI ,YJ (t) is a slowly varying funtion at 0, leads us to the oe�ient ηXI ,YJ .Proposition 2.5 Assume that (13) holds for any I, J ⊂ {1, 2}. Let
η = max{ηX,Y , ηX{2},Y{1,2}

, ηX{1,2},Y{1,2}
, ηX{1,2},Y{1,2}

},where ηX,Y stands for ηX{2},Y{2}
= ηX{1},Y{1}

, and Lη is the orresponding slowly varying funtionin (13).(i) If η = ηX,Y , then (12) holds with ν = ηX,Y , provided the left-hand side of (12) is non null;(ii) If η 6= ηX,Y , then the left-hand side of (12) is null.Proof. First observe that if I ′ ⊂ I and J ′ ⊂ J then
t
1/ηX

I′
,Y

J′ LXI′ ,YJ′ (t) ≥ t1/ηXI ,YJ LXI ,YJ (t).On the other hand, from (8), (12) and (13), we have
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2)) (14)

∼ t1/ηLη(t)
[
t1/ηX,Y −1/ηLX,Y (t)L−1

η (t) − t
1/ηX{2},Y{1,2}

−1/η
LX{2},Y{1,2}

(t)Lη(t)−1

−t
1/ηX{1,2},Y{2}

−1/η
LX{1,2},Y{2}

(t)Lη(t)−1 + t
1/ηX{1,2},Y{1,2}

−1/η
LX{1,2},Y{1,2}

(t)Lη(t)−1
]

= t1/ηLη(t)
[
a1(t) − a2(t) − a3(t) + a4(t)

] (15)where ai(t) (i = 1, ..., 4) denotes the absolute value of the ith term in the produt of the right-handside and satisfy the following properties:(1) a1(t) ≥ max{a2(t), a3(t)} ≥ min{a2(t), a3(t)} ≥ a4(t) > 0;(2) a1(t) = 1 or a1(t) → 0, as t → 0;(3) a1(t) − a2(t) − a3(t) + a4(t) ≥ 0.Now we look at all the possibilities for η.If η = ηX,Y , then (15) beomes
t1/ηLη(t)

[
1 − a2(t) − a3(t) + a4(t)

]
∼ t1/ηLη(t), as t → 0,



6provided 1 − a2(t) − a3(t) + a4(t) is non null.If η = ηX{2},Y{1,2}
, then (15) is equal to

t1/ηLη(t)
[
a1(t) − 1 − a3(t) + a4(t)

]
.By onditions (1) and (2) above, we have a1(t) = 1, and by (1) and (3) we have a3(t) ≥ a4(t) and

−a3(t) + a4(t) ≥ 0. Therefore, a3(t) = a4(t), and hene probability in (14) is null.If η = ηX{1,2},Y{2}
, then (15) is

t1/ηLη(t)
[
a1(t) − a2(t) − 1 + a4(t)

]
,and onditions (1) and (2) lead to a1(t) = 1, and by (1) and (3) we have a2(t) = a4(t). Heneprobability in (14) is null.If η = ηX{1,2},Y{1,2}

, then (15) is equal to
t1/ηLη(t)

[
a1(t) − a2(t) − a3(t) + 1

]
,where, by (1) and (2), a1(t) = 1 = a2(t) = a3(t). Therefore, we also have (14) null. �Observe that, in a similar manner, we extend the uprossings tail dependene oe�ient µY |X,de�ned in (5), to the multivariate uprossings tail dependene oe�ient. More preisely, for sets

I, J, L, K ⊂ {1, ..., n},
µXI ,YJ |XL,YK

= lim
u↑1

P

( ⋂

i∈I,j∈J

{FX(Xi) ≤ u < FX(Xi+1), FY (Yj) ≤ u < FY (Yj+1)}

∣∣∣∣

⋂

l∈L,k∈K

{FX(Xl) ≤ u < FX(Xl+1), FY (Yk) ≤ u < FY (Yk+1)}

) (16)
Dependene also ours when a single proess is studied in terms of its temporal evolution.More preisely, for a stationary proess {Xi}, we an state the above mentioned tail dependenemeasures for random pairs (X1, X1+m), i.e. observations separated in time by a lag m (m ∈

N). Hene, and onsidering marginal uniform normalization, we have the lag-m tail dependeneoe�ient,
λm = lim

u↑1
P (F (X1+m) > u|F (X1) > u), (17)as well as the lag-m Ledford and Tawn oe�ient, ηm, suh that

P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ t1/ηmLm(t), as t ↓ 0 (18)or, equivalently,
P (X1+m > F−1(1 − t)|X1 > F−1(1 − t)) ∼ t1/ηm−1Lm(t), as t ↓ 0 (19)where F is the marginal d.f. of proess {Xi} and Lm(t) is a slowly varying funtion at 0.Similarly, we state the lag-m uprossings tail dependene oe�ient

µm = lim
u↑1

P (F (X2+m) ≤ u < F (X3+m)|F (X1) ≤ u < F (X2)), (20)and also, as t ↓ 0,
P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m)

∼ P (X1 ≤ F−1(1 − t) < X2)
1/νmLνm(t),

(21)



7or, equivalently,
P (X2+m ≤ F−1(1 − t) < X3+m|X1 ≤ F−1(1 − t) < X2)

∼ P (X1 ≤ F−1(1 − t) < X2)
1/ηm−1Lνm(t),

(22)with funtion Lνm(t) slowly varying at 0.Corollary 2.6 For the lag-m uprossings tail dependene oe�ient in (20), we have
µm ∼

(
1 − λ1

)−1
[
λm+1 − λmλ{3+m|2,2+m} − λ1λ{3+m|1,2} + λ1λ{2+m,3+m|1,2}

]
, (23)where we take λXI,J |XL,K

= λI,J|L,K sine there is no ambiguity, provided the existene of theselimits and λ1 6= 1.As stated in Proposition 2.5, the oe�ient νm relates with Ledford and Tawn oe�ientsthroughout:
P (X1 ≤ F−1(1 − t) < X2)

1/νmLνm(t)∼ t1/ηm+1Lm+1(t) − t1/η{2,2+m,3+m}L{2,2+m,3+m}(t)

−t1/η{1,2,3+m}L{1,2,3+m}(t)+ t1/η{1,2,2+m,3+m}L{1,2,2+m,3+m}(t).
(24)Remark 2.7 In applying the multivariate tail dependene oe�ient (6) to onseutive r.v.'s of asequene {Xi}, we are atually omputing a bivariate tail dependene oe�ient (see Remark 2.3) ofa random pair of levels persisting in a �xed period of time, (

min{X1, ..., Xr}, min{Xr+m, ..., Xs}
)that will be studied in Setion 4.2.3 Extremal Index and Uprossings IndexFor a stationary sequene {Xi}, some loal dependene onditions onerning extremal events havebeen onsidered leading to short-range dependene measures, e.g., the extremal index θ (Leadbetteret al. [16℄, 1983) and the uprossings index η (Ferreira [11℄, 2006), related with the presene oflustering of, respetively, exeedanes and uprossings of high levels un.De�nition 3.1 Condition ∆(un) will be said to hold for {Xi} if αn,ln →

n→∞
0 for some sequene

ln = o(n), where
α(n, l) = sup

1≤k≤n−l
{|P (A ∩ B) − P (A)P (B)| : A ∈ Bk

1 (un), B ∈ Bn
k+l(un)},and Bj

i (un) denotes the σ-�eld generated by {Xi, ..., Xj}.Condition D(un) will hold if we are under the same assumptions of ondition ∆(un) above, butrestrited to the events {Xs ≤ un}, i ≤ s ≤ j.The loal dependene ondition D′(un) onsidered in Leadbetter et al. [16℄ bounds the proba-bility of more than one exeedane of un, on a time-interval of rn = [n/kn] integers with kn → ∞,as n → ∞.De�nition 3.2 Condition D′(un) will be said to hold for {Xi} if for some sequene {kn} suhthat kn →
n→∞

∞, we have
lim sup

n→∞
n

rn∑

j=2

P
(
X1 > un, Xj > un

)
= 0.



8 Under ondition D′(un), the exeedanes of levels un tend to ome out isolated, similar toan i.i.d. behavior, leading to unit extremal index. If ondition D′(un) doesn't hold, then theexeedanes of un tend to luster. For suh sequenes, Leadbetter e Nandagopalan [17℄ statedanother loal dependene ondition, D′′(un), weaker than D′(un) (under D′′(un) all values 0 ≤
θ ≤ 1 are possible), that inhibits rapid osillations near high levels and hene restrits the loalourrene of uprossings {Xj ≤ un < Xj+1}.De�nition 3.3 Condition D′′(un) will be said to hold for {Xi} if ondition D(un) also holds and
(kn)n is suh that

kn −→
n→∞

∞ , knαn,ln −→
n→∞

0 , knln/n −→
n→∞

0 , (25)
kn(1 − F (un)) −→

n→∞
0 and
lim sup

n→∞
n

rn−1∑

j=2

P
(
X1 > un, Xj ≤ un < Xj+1

)
= 0.Condition D′′(un) an be slightly weakened by replaing �X1 > un" by �X1 ≤ un < X2" as we ansee in the proof of Proposition 4.3.5 of Leadbetter and Nandagopalan [17℄.For stationary normal sequenes, if the ovarianes between Xi and Xj, ρ|i−j|, satisfy theBerman's ondition ∑∞

n=0 ρ2
n < ∞, then D(un) and D′(un) hold for appropriate sequenes {un}.We shall present in the next result a su�ient ondition for D′(un) and D′′(un) throughout theabove dependene oe�ients {λn} and {µn}.Proposition 3.1 Let {Xi} be a stationary sequene.1. If nP (X1 > un) → τ ≥ 0 then D′(un) holds if and only if ∑rn

j=2 λj−1(un) →
n→∞

0 for anysequene {rn = [n/kn]} with {kn} satisfying (25), where λj(un) = P (X1+j > un|X1 > un),
j ≥ 1.2. If nP (X1 ≤ un < X2) → ς ≥ 0 then D′′(un) holds if and only if ∑rn−1

j=2 µj−1(un) →
n→∞

0for any sequene {rn = [n/kn]} with {kn} satisfying (25), where µj(un) = P (X2+j ≤ un <
X3+j|X1 ≤ 1 < un < X2), j ≥ 1.Proof. Observe that ondition D′(un) is given by

lim sup
n→∞

nP (X1 > un)

rn∑

j=2

λj−1(un) = 0,and ondition D′′(un) beomes
lim sup

n→∞
nP (X1 ≤ un < X2)

rn−1∑

j=2

µj−1(un) = 0. �We remark that if ondition D′(un) holds for un ≡ u
(τ)
n satisfying nP (X1 > u

(τ)
n ) → τ , then we�nd λi = 0, i ≥ 1, provided the existene of these oe�ients. Analogously, from the statementin 2., if D′′(un) holds for un ≡ u

(ς)
n satisfying nP (X1 ≤ u

(ς)
n < X2) → ς, then if the oe�ients µi(i ≥ 1) exist they must be null.Consider notation Mi,j = max{Xi, ..., Xj} for i ≤ j and Mi,j = −∞ for i > j.De�nition 3.4 Condition D(k)(un) holds for {Xi} when for some kn as in (25),

nP
(
X1 > un ≥ M2,k, Mk+1,rn > un

)
→

n→∞
0.



9The family of onditions D(k)(un), for k ≥ 1, onsidered in Chernik et al. [6℄ (1991) aresu�ient to derive
θ = lim

n→∞
P (M2,k ≤ u(τ)

n |X1 > u(τ)
n )when the limit exists, where levels u

(τ)
n satisfy nP (X1 > u

(τ)
n ) → τ , as n → ∞. Under D′(un(τ))≡D(1)(u(τ)

n ) we have θ = 1, and D(2)(u(τ)
n ) leads to ς = θτ , where ς = limn→∞ nP (X1 ≤ un < X2).We now relate θ with the multivariate tail dependene oe�ients.Proposition 3.2 If the stationary sequene {Xi} satis�es D(k)(u(τ)

n ), then the extremal index isgiven by
θ = 1 −

∑

2≤i≤k

λ{i|1} +
∑

2≤i<j≤k

λ{i,j|1} + ... + (−1)k+1λ{2,...,k|1}, (26)where λ{i|1} ≡ λi−1 given in (17), provided these limits exist.Proof. Just observe that, as n → ∞,
θ ∼ 1 −

∑

2≤i≤k

P (Xi > u(τ)
n |X1 > u(τ)

n ) +
∑

2≤i<j≤k

P (Xi > u(τ)
n , Xj > u(τ)

n |X1 > u(τ)
n )

+... + (−1)k+1P (X2 > u
(τ)
n , ..., Xk > u

(τ)
n |X1 > u

(τ)
n ). �Aording to the remark after Proposition 3.1, we will �nd θ = 1 under D′(u(τ)

n ), sine we have
0 ≤ λi1,...,ip|1 ≤ λi1|1 ≡ λi1−1 = 0, for any integers 1 < i1 < ... < ip.Replaing exeedanes with uprossings in the ondition D(k)(un) a generalization of onditionD′′(un) takes plae. This new family of loal onditions, slightly stronger than D(k)(un), is de�nedbelow (f. Ferreira [11℄).Consider notation Ñn(B) =

∑n
i=1 1{Xi≤un<Xi+1}δi/n(B), B ⊂ [0, 1], and Ñn[i/n, j/n] ≡ Ñi,jDe�nition 3.5 For any k ≥ 2, {Xi} satis�es ondition D̃(k)(un) if ondition ∆(un) holds and

nP
(
X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn > 0

)
→

n→∞
0,for some sequene rn = [n/kn] with {kn} satisfying (25).We now de�ne the uprossings index, ϑ, whih, as already mentioned, an be viewed as ameasure of lustering of uprossings of high levels un by the r.v.'s in {Xi}.De�nition 3.6 If for eah ς > 0 there exits {ũ

(ς)
n } suh that nP (X1 ≤ u

(ς)
n < X2) → ς and

P (Ñn(ũ
(ς)
n ) = 0) → exp(−ϑς), for some onstant 0 ≤ ϑ ≤ 1, then we say that the sequene {Xi}has uprossings index ϑ.Hene, under onditions ∆(un) and D̃(k)(u(ς

n ) for some k ≥ 2 and for eah ς > 0, then theuprossings index of {Xi} exists and is equal to ϑ if and only if
P (Ñ3,k(ũ(ς)

n ) = 0|X1 ≤ ũ(ς)
n < X2) →

n→∞
ϑ,for eah ς > 0 (Corollary 3.1 in Ferreira [11℄). We also have the following relation between theuprossings index and the extremal index:

θ =
ς

τ
ϑ (27)A relation between µ and the multivariate tail uprossings oe�ients de�ned in (16) an alsobe stated.



10Proposition 3.3 If the stationary sequene {Xi} satis�es D̃(k)(u(ς)
n ), we have,

ϑ = 1 −
∑

3≤i≤k

µ{i|1} +
∑

3≤i<j≤k

µ{i,j|1} + ... + (−1)k+1µ{2,...,k|1}, (28)where µ{i|1} ≡ µi−2 given in (20), provided the existene of these limits.Proof. Straightforward by onsidering,
ϑ ∼ 1 −

∑

3≤i≤k

P (Xi ≤ u(τ)
n < Xi+1|X1 ≤ u(τ)

n < X2)

+
∑

3≤i<j≤k P (Xi ≤ u
(τ)
n < Xi+1, Xj ≤ u

(τ)
n < Xj+1|X1 ≤ u

(τ)
n < X2)

+... + (−1)kP (X3 ≤ u
(τ)
n < X4, ..., Xk ≤ u

(τ)
n < Xk+1|X1 ≤ u

(τ)
n < X2),as n → ∞. �Under ondition D̃(2)(u(ς)

n ) we will �nd ϑ = 1 as a onsequene of Proposition 3.1.4 ExamplesIn this setion, we illustrate the statements above with some examples.Example 4.1 Let {Yn}n≥−2 be an i.i.d. sequene of standard uniform distributed r.v.'s. Con-sider {Xn}n≥1 suh that Xn = max(Yn, Yn−2, Yn−3). This sequene has θ = 1/3, ϑ = 1/2and satis�es onditions ∆(un) (it is 4-dependent), D(3)(un) and D̃(3)(un) for levels un suh that
nP (X1 > un) →

n→∞
τ > 0 (Ferreira [11℄).We ompute the tail dependene oe�ients, λm and ηm, given in (17) and (18), respetively.Observe that,

P (X1 > u, X1+m > u) = 1 − P (X1 ≤ u) − P (X1+m ≤ u) + P (X1 ≤ u, X1+m ≤ u)

= 1 − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1+m ≤ u, Ym−1 ≤ u, Ym−2 ≤ u)+

P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y1+m ≤ u, Ym−1 ≤ u, Ym−2 ≤ u)

= 1 − 2u3 + u5
1{m≤3} + u6

1{m>3},and hene,
P (X1 > u, X1+m > u)

P (X1 > u)
= 1−2u3+u5

1−u3 1{m≤3} + (1 − u3)1{m>3}

= 1−2u3+u5

1−u3 1{m≤3} + P (X1 > u)1{m>3},leading to λm = (1/3)1{m≤3} + 01{m>3} (observe that θ = 1− λ1 − λ2 and D′(un) does not hold).Taking u = 1 − t, we obtain, for m ≤ 3,
P (X1 > 1 − t, X1+m > 1 − t)

P (X1 > 1 − t)
∼ 1, t ↓ 0.Therefore, by (19) ηm = 1 · 1{m≤3} + (1/2) · 1{m>3} and Lm(t) = 1.



11Now we ompute the tail uprossings oe�ients, µm and νm, given in (20) and (21), respe-tively. Observe that,
P (X1 ≤ u < X2) = P (X1 ≤ u) − P (X1 ≤ u, X2 ≤ u)

= P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u)

= u3 − u5 = u3(1 − u2)and that,
P (X1 ≤ u < X2, X2+m ≤ u < X3+m)

= P (X1 ≤ u, X2+m ≤ u) − P (X1 ≤ u, X2+m ≤ u, X2 ≤ u)

−P (X1 ≤ u, X2+m ≤ u, X3+m ≤ u) + P (X1 ≤ u, X2+m ≤ u, X2 ≤ u, X3+m ≤ u)

= P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u)

−P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u)

−P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y3+m ≤ u, Y1+m ≤ u, Ym−1 ≤ u)

+P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u

, Y3+m ≤ u, Y1+m ≤ u, Ym−1 ≤ u)
= u6(1 − u2)2provided m > 3. If m = 1, we have,

P (X1 ≤ u < X2, X3 ≤ u < X4) = u5(1 − u)if m = 2, then
P (X1 ≤ u < X2, X4 ≤ u < X5) = u5(1 − u − u2 + u3)and m = 3,
P (X1 ≤ u < X2, X5 ≤ u < X6) = u6(1 − u − u2 + u3)Hene, by (20), we obtain µ1 = 1/2 and µm = 0 for m > 1 (observe now that ϑ = 1 − µ1 andD′′(un) does not hold too). Replaing u by 1− t in the above expressions, we have suessively, as

t ↓ 0,
P (X1 ≤ 1 − t < X2, X2+m ≤ 1 − t < X3+m)

P (X1 ≤ 1 − t < X2)
∼ (1 − t)3(1 − (1 − t)2) ∼ 2tprovided m > 3, whereas for m = 1,

P (X1 ≤ 1 − t < X2, X3 ≤ 1 − t < X4)

P (X1 ≤ 1 − t < X2)
∼ 1

2−t − tfor m = 2,
P (X1 ≤ 1 − t < X2, X4 ≤ 1 − t < X5)

P (X1 ≤ 1 − t < X2)
∼ t(1 − t)2 ∼ tand m = 3,

P (X1 ≤ 1 − t < X2, X5 ≤ 1 − t < X6)

P (X1 ≤ 1 − t < X2)
∼ t(1 − t)3 ∼ t



12Therefore, from (22) we derive ν1 = 1 and Lν1(t) = 1
2−t − t orresponding to tail uprossingsdependene, and for m > 1, νm = 1/2 and Lνm(t) = 1, i.e., an almost total independene.Example 4.2 Let {Yn}n≥−2 be an i.i.d. sequene of standard uniform distributed r.v.'s. Consider

{(Xn,1, Xn,2}n≥1 suh that Xn,1 = max(Yn, Yn−2, Yn−3) and Xn,2 = Yn+1, n ≥ 1. We have,
P (X1,2 ≤ u < X2,2) = P (Y2 ≤ u < Y3) = u(1 − u),as well as,

P (X1,1 ≤ u < X2,1)=P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2 ≤ u, Y0 ≤ u)

=u3 − u5 = u3(1 − u2),and also,
P (X1,2 ≤ u < X2,2, X1,1 ≤ u < X2,1)

= P (Y2 ≤ u < Y3, max(Y1, Y−1, Y−2) ≤ u < max(Y2, Y0, Y−1))

= P (Y2 ≤ u < Y3, Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y0 ≤ u)

= u4(1 − u)2

(29)Hene,
µ = lim

u↑1
P (X1,2 ≤ u < X2,2|X1,1 ≤ u < X2,1) = 0 = lim

u↑1
P (X1,1 ≤ u < X2,1|X1,2 ≤ u < X2,2).Observe now that,

P (X1,2≤1−t<X2,2,X1,1≤1−t<X2,1)
P (X1,2≤1−t<X2,2) ∼ P (X1,2 ≤ 1 − t < X2,2)(1 − t)2, as t ↓ 0,leading to ν = 1/2 with Lν(t) = (1 − t)2, and that

P (X1,2≤1−t<X2,2,X1,1≤1−t<X2,1)
P (X1,1≤1−t<X2,1) ∼ t(1−t)

2−t = t(1 − 1
2−t ), as t ↓ 0,hene ν = 1/2 with Lν(t) = 1 − 1

2−t .Now onsider sequene {(Xn,1, Xn,2}n≥1 suh that Xn,1 = max(Yn, Yn−2, Yn−3) and Xn,2 = Yn,
n ≥ 1. Only the joint probability in (29) hanges, beoming
P (X1,2 ≤ u < X2,2, X1,1 ≤ u < X2,1)=P (Y2 ≤ u < Y3, max(Y1, Y−1, Y−2) ≤ u < max(Y2, Y0, Y−1))

=P (Y2 ≤ u < Y3, Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u)

=u3(1 − u).Therefore we have uprossings-tail dependene, sine,
lim
u↑1

P (X1,2 ≤ u < X2,2|X1,1 ≤ u < X2,1) = 1/2 and lim
u↑1

P (X1,1 ≤ u < X2,1|X1,2 ≤ u < X2,2) = 1,the last one orresponding to perfet dependene.



134.1 M4 proessesSmith and Weissman (1996) extend Deheuvels' de�nition to the so alled multivariate maxima ofmoving maxima (heneforth M4) proess:
Yi,d = max

l
max

k
al,k,dZl,i−k, d = 1, ..., D,−∞ < i < ∞,for nonnegative onstants {al,k,d, l ≥ 1,−∞ < k < ∞} satisfying ∑∞

l=1

∑∞
k=−∞ al,k,d = 1 for

d = 1, ..., D, and {Zl,k, l ≥ 1,−∞ < k < ∞} being an array of independent unit Fréhet randomvariables whih have distribution form F (x) = exp(−1/z), z > 0. These are very �exible for tempo-rally dependent multivariate extreme value models. The tail dependene onerning exeedanes,i.e., tail dependene oe�ients
λ

dd′
r

= lim
x→∞

P (Y1+r,d′ > x|Y1,d)and analogous extended versions, η
dd′

r
, of Ledford and Tawn oe�ient, η, have been derived inHe�ernan et al. [15℄ (2007). More preisely,

P (Y1,d < x, Y1+r,d′ < x) = exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}and, as x → ∞,
exp

{ ∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}
∼ 1 −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1and
λ

(M4)
dd′

r
= 2 −

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′) and η

(M4)
dd′

r
= 1.Hene, for su�iently large x,

P (Yr+1,d′ ≤ x < Yr+2,d′, Y1,d ≤ x < Y2,d)

=P (Yr+1,d′ ≤ x, Y1,d ≤ x) − P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x)

−P (Yr+1,d′ ≤ x, Y1,d ≤ x, Yr+2,d′ ≤ x) + P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x, Yr+2,d′ ≤ x)

=exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}

−exp

{
−

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′ , al,k+1,d)x

−1

}

−exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

}

+exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

}

∼
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d)x
−1+

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

−
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1−
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

=Ax−1,

(30)



14and also
P (Y1,d ≤ x < Y2,d) = P (Y1,d ≤ x) − P (Y1,d ≤ x, Y2,d ≤ x)

∼
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 −
∞∑

l=1

∞∑

k=−∞

al,k,dx
−1

=
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 − x−1

= B x−1,

(31)
whih is non null if al,k,d is non dereasing as a funtion of k (otherwise uprossing events, {Yi,d ≤
x < Yi+1,d}, would be impossible). Therefore, under this assumption, by (30) and (31), we obtain,

µ(M4)
dd′

r

= P (Yr+1,d′ ≤ x < Yr+2,d′|Y1,d ≤ x < Y2,d) ∼
A
Borresponding to uprossings-tail dependene. Hene, ν(M4)

dd′
r

= 1 with slowly varying funtion
L

ν
(M4)

dd′
r

≡ A/B.Sine all variables in model M4 are asymptotially dependent, He�ernan et al. [15℄ (2007)propose an extension in order to inlude also asymptotial independene. More preisely, theypresent
Yi,d = max

(
U

1/α
i,d , max

l
max

k
al,k,dZl,i−k

)
, d = 1, ..., D,−∞ < i < ∞, (32)where α > 0 and {Ui,d,−∞ < i < ∞, d = 1, ..., D} are an array of positive independent r.v.'s andindependent of Zl,i. As before we onsider unit Fréhet marginals.Observe that we now have,

P (Yi,d < x) = exp{−x−α − x−1}as well as,
P (Y1,d < x, Y1+r,d′ < x) = exp

{
− 2x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}
.In this ase, we have,

λ
(EM4)
dd′

r
=

{
0 , α < 1

λ
(M4)
dd′

r
, α ≥ 1

and η
(EM4)
dd′

r
=

{
max(1/2, α) , α < 1
1 , α ≥ 1

(33)See He�ernan et al. [15℄ (2007) for details.



15Similarly to (30) and (31) we derive suessively,
P (Yr+1,d′ ≤ x < Yr+2,d′ , Y1,d ≤ x < Y2,d)

= P (Yr+1,d′ ≤ x, Y1,d ≤ x) − P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x)

−P (Yr+1,d′ ≤ x, Y1,d ≤ x, Yr+2,d′ ≤ x) + P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x, Yr+2,d′ ≤ x)

= exp

{
− 2x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}

− exp

{
− 3x−α −

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′ , al,k+1,d)x

−1

}

− exp

{
− 3x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

}

+ exp

{
− 4x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

}

∼ Ax−1 + 3x−2α,and
P (Y1,d ≤ x < Y2,d) = P (Y1,d ≤ x) − P (Y1,d ≤ x, Y2,d ≤ x)

∼ x−α +
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 −
∞∑

l=1

∞∑

k=−∞

al,k,dx−1

= x−α + B x−1,Therefore, denoting µ(EM4)
dd′

r

for extended M4 proess in (32), we have
µ(EM4)

dd′
r

=

{
0 , if α < 1

µ(M4)
dd′

r

, if α ≥ 1When α < 1, as x → ∞,
P (Yr+1,d′ ≤ x < Yr+2,d′ , Y1,d ≤ x < Y2,d)

P (Y1,d ≤ x < Y2,d)
1/ν

(EM4)

dd′
r

∼
Ax−1 + 3x−2α

[x−α + Bx−1]
1/ν

(EM4)

dd′
r

,whih implies, ν(EM4)
dd′

r

= max(1/2, α) with slowly varying funtion L
ν
(EM4)

dd′
r

(x) = 31{α≤1/2} +

A1{α>1/2}. If α ≥ 1, then ν(EM4)
dd′

r

= ν(M4)
dd′

r

= 1 with slowly varying funtion L
ν
(EM4)

dd′
r

≡ L
ν
(M4)

dd′
r

.Observe that oe�ient ν(EM4)
dd′

r

oinides with η(EM4)
dd′

r

in (33).4.2 Levels that persist for a �xed period of timeThe main objetive of an extreme value analysis is to estimate the probability of events that aremore extreme than any that have already been observed. By way of example, suppose that a



16sea-wall projetion requires a oastal defense from all sea-levels, for the next 100 years. Extremalmodels are a preious tool that enables extrapolations of this type. However, an adverse situationmay also be the permaneny of high values in time. Draisma [7℄ broahes this problem with regardto suessive high tide water levels registered on some plaes of Holland's oast whih may damagethe sand dunes and hene give rise to devastating �oods. More formally, given a time series ofwater levels, {X1, ..., Xn}, he presents a new sequene {Yi}, suh that,
Yi = min(Xi, ..., Xi+s), (34)where s is some �xed positive integer, that is, {Yi} is a sequene where eah observation yi isa value that persist for s + 1 suessive periods of time. We will look at the extremal behaviorof {Yi} by onsidering �rst that {Xi} is an i.i.d. sequene and then onsidering two partiularstationary ases of {Xi}: pARMAX and ARMAX. The sequene {Yi} is obviously stationary,hene it exists a ommon marginal d.f., whih we will denote by FY . In the following we will usenotation at = F−1

Y
(1 − t).4.2.1 {Xi} is i.i.d.Let {Xi} be an i.i.d. sequene. We have that {Yi} satisfying (34) is (s+1)-dependent and satis�esondition D′(un) (Leadbetter et al. [16℄, 1983). Assuming the regularly varying ondition (38) andgiven the independene of {Xi},

1 − FY (x) = (1 − F (x))s+1 = x− 1
γ/(s+1) (LF (x))

s+1and hene, γ
Y

= γ/(s + 1). Observe also that
F−1

Y (1 − t) = F−1
(
1 − t1/(s+1)

)
.Considering the random pair (Y1, Y1+m) omposed by two r.v.'s with a lag-distane m, we have

P
(
Y1 > F−1

Y

(
1 − t

)
, Y1+m > F−1

Y

(
1 − t

))
=






t1+m/(s+1) , m ≤ s

t2 , m > s .and hene, ηm = (s + 1)/(s + m + 1) for m ≤ s and ηm = 1/2 for m > s, with Lm(t) = 1 for all
m ∈ N (for details see Ferreira and Canto e Castro [10℄, 2008). It is straightforward that λ(Y )

m = 0,for all m ∈ N, and hene, by (23), µ(Y )
m = 0, whih agrees with the fat that ondition D′(un) holdsand θ = 1 (Ferreira and Canto e Castro [10℄, 2008). From (28) we also have ϑ = 1.Now we fous on the alulation of oe�ient ν(Y )

m . Note that,
P (Y2+m ≤ x < Y3+m, Y1 ≤ x < Y2) = 0, if m ≤ s. (35)For m > s, given the independene and stationarity of sequene {Xi}, we have

P (Y2+m ≤ x < Y3+m, Y2 ≤ x < Y1) = P (Y1 ≤ x < Y2)
2,and hene, ν(Y )

m = 1/2 and L
ν
(Y )
m

(t) = 1.4.2.2 {Xi} is stationary: pARMAX and ARMAXAs already mentioned, the motivation for studying the sequene of levels that persist for a �xedperiod of time emerges from its potential appliability to natural phenomenon data. Wheneverthe independene seems an unrealisti assumption, we must onsider dependent models. Max-autoregressive proesses have revealed very useful in what respets the extremal analysis of timeseries. We onsider for sequene {Xi} the proesses, pARMAX and ARMAX, de�ned below in(36) and (37), respetively, given their suitably for extreme values modeling, easily derived �nite-dimensional d.f.'s and quite di�erent tail behavior onerning measures based on exeedanes of



17high values. See Ferreira and Canto e Castro [10℄ for details.Consider {Zi} a sequene of i.i.d. opies of r.v. Z with positive support and marginal d.f. FZ .A sequene {Xi} is said to be a pARMAX proess if,
Xi = Xc

i−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ... (36)and is said to be an ARMAX proess if,
Xi = cXi−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ... (37)with Xi independent of Zj , for all integer i < j. For the sake of stationarity in the pARMAX ase,the innovations {Zi} have support in [1,∞[.We start by analyzing the proesses themselves (some auxiliary alulations are in Appendix),then we study sequene {Yi} of levels ARMAX and ARMAX persisting in time. We shall alwaysonsider, both with Pareto-type marginal d.f. F ,

1 − F (x) = x−1/γLF (x), (38)where LF is a slow varying funtion at +∞ and γ (the tail index) is positive, whih is the mostinteresting ase. Let {Xi} be a pARMAX proess satisfying (36). Based on relations (A.4)-(A.8),we have that, as t ↓ 0,
P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ t21{cm≤1/2} + t1/cm

1{cm>1/2}and hene, by (18), we obtain ηm = max(1/2, cm) and Lm(t) = 1.1{cm≤1/2} + Lm(t).1{cm>1/2}with Lm(t) de�ned in (A.7) (see Ferreira and Canto e Castro [10℄ for details). We have λm = 0,for all m ∈ N and hene, by (23), we also have µm = 0. Observe that in pARMAX proesses theloal dependene ondition D′(un) holds and the extremal index is unit (θ = 1 − λ1). By relation(28) we have also an unit uprossings index (i.e., ϑ = 1 − µ1 = 1).For a proess {Xi} satisfying ARMAX reursion (37), we have that, as t ↓ 0,
P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ tcm/γwhih leads to, ηm = 1 and Lm(t) = cm/γ , for all m ∈ N (see Ferreira and Canto e Castro [10℄ fordetails), and hene we have λm = cm/γ . In the ARMAX proesses the loal dependene onditionD′(un) does not hold and θ = 1− c1/γ (Alpuim [1℄ 1989), whih is in agreement with, respetively,Propositions 3.1 and 3.2 and remarks therein.Analogously, and replaing t by 1 − u, we an obtain the following probabilities, as u ↑ 1, inorder to derive µm in (23):

λ{3+m|2+m,2} ∼ P (F (X3+m) > u|F (X2+m) > u, F (X2) > u)

∼
1−3u+ u2

1−(1−u)c1/γ
+ u2

1−(1−u)c(m+1)/γ
+ u2

1−(1−u)cm/γ
− u3

(1−(1−u)cm/γ )(1−(1−u)c1/γ )

1−2u+ u2

1−(1−u)cm/γ

∼ c(m+1)/γ(1−u)
cm/γ(1−u)

∼ c1/γ ,

(39)
λ{3+m|2,1} ∼ P (F (X3+m) > u|F (X2) > u, F (X1) > u)

∼
1−3u+ u2

1−(1−u)c1/γ
+ u2

1−(1−u)c(m+1)/γ
+ u2

1−(1−u)c(m+2)/γ
− u3

(1−(1−u)c(m+1)/γ )(1−(1−u)c1/γ )

1−2u+ u2

1−(1−u)c1/γ

∼ c(m+2)/γ(1−u)

c1/γ(1−u)
∼ c(m+1)/γ ,

(40)



18and
λ{3+m,2+m|2,1} ∼ P (F (X3+m) > u, F (X2+m) > u|F (X2) > u, F (X1) > u)

∼

[
1−4u+ 2u2

1−(1−u)c1/γ + 2u2

1−(1−u)c(m+1)/γ + u2

1−(1−u)c(m+2)/γ + u2

1−(1−u)cm/γ

− 2u3(1−(1−u)c1/γ)−1

(1−(1−u)c(m+1)/γ )
− 2u3(1−(1−u)c1/γ)−1

(1−(1−u)cm/γ)
+ u4(1−(1−u)c1/γ)−2

(1−(1−u)cm/γ)

]/

[
1 − 2u + u2

1−(1−u)c1/γ

]

∼ c(m+2)/γ(1−u)
c1/γ(1−u)

∼ c(m+1)/γ ,

(41)
Hene, by (23), we also obtain µm = 0 in the ARMAX proess. The loal dependene onditionD′′(un) holds (Canto e Castro [3℄, 1992) and by (28) we obtain uprossings index ϑ = 1.Now we ompute oe�ient νm in (21). Consider �rst the pARMAX proess and at = F−1(1−

t). Based on the pARMAX relations (A.4)-(A.8), after some alulations we derive, as t ↓ 0,
P (X3+m > at, X2 > at) ∼ t2 + t1/cm+1

Lm+1(t),

P (X3+m > at, X2+m > at, X2 > at) ∼ t3 + t1/cm+1

Lm+1(t),

P (X3+m > at, X2 > at, X1 > at) ∼ t3 + t1/cm+2

Lm+2(t)and
P (X3+m > at, X2+m > at, X2 > at, X1 > at) ∼ t4 + t2/cL1(t)

2 + t1/cm+2

Lm+2(t)Therefore, we have that,
P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m) ∼ t2 − 2t3 + t4 + t2/cL1(t)2 ∼ t2and also P (X1 ≤ F−1(1 − t) < X2) ∼ t. Hene, by (21), we have νm = 1/2 and Lνm(t) ∼ 1 for all

m ∈ N whih orresponds to (almost) total independene. (See Proposition 2.5).For ARMAX proess, if we apply (39)-(41) in (24), we have,
t1/νmLνm(t)∼ tc(m+1)/γ − tc(m+1)/γ − tc(m+2)/γ + tc(m+2)/γ ,leading us to a null limit. Going further on the rate of the approximation and based on relations(A.9)-(A.10), after some alulations, we obtain

P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m) ∼ (1 − c1/γ)2(1 − cm/γ)t2, as t ↓ 0,as well as, P (X1 ≤ F−1(1 − t) < X2) ∼ t(1 − c1/γ). Hene, aording to (21), we have νm = 1/2and Lνm(t) = (1 − c1/γ)(1 − cm/γ).Now we turn to the sequene {Yi}. Deriving results in a dependene ontext for {Yi} involvesmore alulations and so, in the sequel, we restrit ourselves to the ase s = 1 in (34), though wepresume that similar results will be valid for any �nite s.We treat �rst the ase where {Xi} is a pARMAX proess as in (36). Based on relations(A.4)-(A.8) and after some alulations, we have, for m > 1,
P (Y1+m > at, Y1 > at) ∼ t21{cm≤1/2} + t1/cm

L(Y )

m+1(t)1{cm>1/2} (42)



19where slow varying funtion L(Y )

j (t) is given in (A.7) (details an be seen in Ferreira and Cantoe Castro [10℄, 2008). Hene it is straightforward that λ(Y )
m = 0 (agrees with the fat that D′(un)holds and θ = 1). The ase m = 1 is similar. Therefore, by (23), we obtain µ(Y )

m = 0 forall m ∈ N (hene ϑ = 1). Note that, from (42), we have η(Y )
m = max(1/2, cm) and L(Y )

m (t) ∼
1{cm≤1/2} + L(Y )

m+1(t)1{cm>1/2}.In order to ompute ν(Y )
m , observe that,

P (Y2+m ≤ x < Y3+m, Y1 ≤ x < Y2)

= P (Y3+m > x, Y2 > x) − P (Y3+m > x, Y2+m > x, Y2 > x)

−P (Y3+m > x, Y1 > x, Y2 > x) + P (Y3+m > x, Y2+m > x, Y2 > x, Y1 > x)

= P (X1 < x, X2+m < x) − P (X1 < x, X2 < x, X2+m < x)

−P (X1 < x, X3 < x, X2+m < x) − P (X1 < x, X2+m < x, X3+m < x)

−P (X1 < x, X2+m < x, X4+m < x) + P (X1 < x, X2 < x, X3 < x, X2+m < x)

+P (X1 < x, X2 < x, X2+m < x, X3+m < x) + P (X1 < x, X2 < x, X2+m < x, X4+m < x)

+P (X1 < x, X3 < x, X2+m < x, X3+m < x) + P (X1 < x, X3 < x, X2+m < x, X4+m < x)

+P (X1 < x, X2+m < x, X3+m < x, X4+m < x)

−P (X1 < x, X2 < x, X3 < x, X2+m < x, X3+m < x)

−P (X1 < x, X2 < x, X3 < x, X2+m < x, X4+m < x)

−P (X1 < x, X2 < x, X2+m < x, X3+m < x, X4+m < x)

−P (X1 < x, X3 < x, X2+m < x, X3+m < x, X4+m < x)

+P (X1 < x, X2 < x, X3 < x, X2+m < x, X3+m < x, X4+m < x).As already notied in (35), the probability above is null if m = 1. By (A.4) and (A.5) and reallingnotation at = F−1
Y

(1 − t), we have
P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2)

= F 2(at)

F
(
a
1/c1+m

t

) − F 3(at)

F
(
a
1/c
t

)
F
(
a
1/cm

t

) − F 3(at)

F
(
a
1/c

2

t

)
F
(
a
1/cm+1

t

) − F 3(at)

F
(
a
1/c
t

)
F
(

a
1/cm+1

t

)

− F 3(at)

F
(
a
1/c

2

t

)
F
(
a
1/cm+1

t

) + F 4(at)

F 2
(
a
1/c
t

)
F
(
a
1/cm−1

t

) + F 4(at)

F 2
(

a
1/c
t

)
F
(
a
1/cm

t

)

+ F 4(at)

F
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm

t

) + F 4(at)

F
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

)

+ F 4(at)

F 2
(
a
1/c2

t

)
F
(

a
1/cm−1

t

) + F 4(at)

F 2
(
a
1/c
t

)
F
(
a
1/cm+1

t

) − F 5(at)

F 3
(
a
1/c
t

)
F
(
a
1/cm−1

t

)

− F 5(at)

F 2
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

) − F 5(at)

F 3
(
a
1/c
t

)
F
(
a
1/cm

t

)

− F 5(at)

F 2
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

) + F 6(at)

F 4
(
a
1/c
t

)
F
(
a
1/cm−1

t

)

(43)



20Sine, as t ↓ 0, we have
1 − F

(
a1/cj

t

)
∼

{
t1/(2cj )

(
L(Y )

j (t)
)1/2

, c ≤ 1/2

t1/cj−1
L(Y )

j−1(t)
)

, c > 1/2 ,with slow varying funtion L(Y )

j (t) given in (A.7) (see Ferreira and Canto e Castro [10℄, 2008), ifwe apply (A.6)-(A.7), after some alulations we obtain, as t ↓ 0,
P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2) ∼ t2and also P (Y1 ≤ at < Y2) ∼ t. Therefore, by de�nition in (21), we have for pARMAX ase,

ν(Y )
m

= 1/2 and L
ν
(Y )
m

(t) ∼ 1.Regarding the ARMAX proess in (37), we have
P (Y1+m > at, Y1 > at) ∼ tcm/γ ,as t ↓ 0 (see details in Ferreira and Canto e Castro [10℄, 2008), and hene we have, λ(Y )

m = cm/γ (inagreement with the fat that D′(un) does not hold and θ = 1− c
1/γ), η(Y )

m = 1 and L(Y )
m (t) ∼ cm/γfor all m ∈ N. A similar reasoning to that in (43) leads to

P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2)

= F 2(at)
F (at/c1+m) −

F 3(at)
F (at/c)F (at/cm) −

F 3(at)
F (at/c2)F (at/cm+1) −

F 3(at)
F (at/c)F (at/cm+1)

− F 3(at)
F (at/c2)F (at/cm+1) + F 4(at)

F 2(at/c)F (at/cm−1) + F 4(at)
F 2(at/c)F (at/cm) + F 4(at)

F (at/c)F (at/c2)F (at/cm)

+ F 4(at)
F (at/c)F (at/c2)F (at/cm−1) + F 4(at)

F 2(at/c2)F (at/cm−1) + F 4(at)
F 2(at/c)F (at/cm+1) −

F 5(at)
F 3(at/c)F (at/cm−1)

− F 5(at)
F 2(at/c)F (at/c2)F (at/cm−1) −

F 5(at)
F 3(at/c)F (at/cm) −

F 5(at)
F 2(at/c)F (at/c2)F (at/cm−1) + F 6(at)

F 4(at/c)F (at/cm−1)Sine we have, as t ↓ 0,
1 − F (at/cj) ∼ 1 − FY (cj−1at) ∼ c(j−1)/γtin the ARMAX ase (Ferreira and Canto e Castro [10℄, 2008), after some alulations we derive

P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2) ∼ (1 − c1/γ)2(1 − c(m−1)/γ)t2,as well as,
P (Y1 ≤ at < Y2) ∼ (1 − c1/γ)t.Therefore, aording to (20) we have µ(Y )

m = 0 (agrees with the fat that D′′(un) holds; we havethen ϑ = 1), and by (21), ν(Y )
m = 1/2 and L

ν
(Y )
m

(t) ∼ (1 − c(m−1)/γ).5 Inferene: some notesThe estimation of oe�ient µ an be made through the multivariate tail dependene oe�ients
λXI ,YJ |XL,YK

given the relation stated in (7). Observe that they an be de�ned via the notion ofopula, introdued by Sklar [24℄ (1959). A opula C is a umulative distribution funtion whosemargins are uniformly distributed on [0, 1], i.e., C(u1, ..., ud) = P (F1(X1) ≤ u1, ..., Fd(Xd) ≤ ud),where F1, ..., Fd are the ontinuous marginal d.f.'s of random vetor (X1, ..., Xd) and (u1, ..., ud) ∈



21
[0, 1]d. The opula is unique as long as the marginal d.f.'s are ontinuous, a requisite that weassume. For instane, we have

λ = lim
u↑1

2 −
1 − C(u, u)

1 − u
= lim

u↑1
2 −

log C(u, u)

log u
.Parametri estimation methods, based on either a spei� distribution or family of distributions ora spei� opula or family of opulas, as well as nonparametri estimation proedures are alreadyknown in literature. For a survey see Frahm et al. [13℄ (2005) and Shmidt and Stadtmüller [23℄(2006). In the sequel we shall fous on nonparametri estimation.Under onditions somewhat wide in this ontext, Shmidt and Stadtmüller [23℄ (2006) provestrong onsisteny and asymptoti normality of the general nonparametri estimator

λ̂ZI |ZL
=

n∑

j=1

1
{R

(j)
nl >n−k, ∀l∈I∪L}

/ n∑

j=1

1
{R

(j)
nl >n−k, ∀l∈L}for the general oe�ient λZI |ZL

, onsidering random vetor Z = (Z1, ..., Zd), where I ∪ L ⊂

{1, ..., d} (I ∩ L = ∅), R
(j)
nl denotes de rank of omponent Z

(j)
l , k = k(n) → ∞ and k/n → 0 as

n → ∞. In our ase, the most interesting situation is to onsider the non-independent sequene,
(X1, X2, Y1, Y2), (X3, X4, Y3, Y4),...,(Xn−1, Xn, Yn−1, Yn). If we assume a regularity ondition forthe joint tail of (X1, X2, Y1, Y2) and a uniform bound on the probability that both X1 and X2,or Y1 and Y2, belong to an extremal interval, similar to onditions (C2) and (C3) in Drees [9℄(2003), we still derive asymptoti normality with eventually modi�ed variane (see Proposition 2.1and Theorem 2.1 in Drees [9℄ 2003, and Theorem 6/10 in Shmidt and Stadtmüller [23℄ 2006).Therefore, by plugging in the respetive tail dependene oe�ient estimators in expression (7),we derive estimator,

µ̂ = (1 − λ̂X{2}|X{1}
)−1

[
λ̂Y |X − λ̂Y{2}|Y{1}

λ̂X{2}|Y{1,2}
− λ̂X{2}|X{1}

λ̂Y{2}|X{1,2}
+

+λ̂Y |X λ̂X{2},Y{2}|X{1},Y{1}

]
,whih is also strong onsistent (straightforward from Theorem 11 Shmidt and Stadtmüller [23℄2006) and asymptoti normal. One important pratial problem arises in the optimal hoie of theparameter k whih relates to the usual variane-bias problem. An algorithm to hoose the optimalthreshold k an be seen in Shmidt and Stadtmüller [23℄ (2006).Other estimators arise from the relation between µ and the uprossings index ϑ whih in turnrelates with the extremal index θ by ϑ = τ

ς θ in (27). More preisely, under onditions ∆(un) and
D̃(3)(un), we have

µ1 = 1 − ϑ.with µ1 given in (20). Estimation of ϑ an be done through the extremal index θ, modi�ed byonsistent estimates of the mean number of exeedanes (τ) and the mean number of uprossings(ς) of high levels. There are several estimators of the extremal index in literature. For a surveysee Anona-Navarrete and Tawn [2℄.Now we onsider oe�ient ν introdued in (12). Given the relations stated with other param-eters well-known and studied in the literature, we an also derive quite straightforward estimatorsfor ν. More preisely, under onditions of Proposition 2.5, an estimator suggesting it-self is,
ν̂ = max(η̂, η̂X{2},Y{1,2}

, η̂X{1,2},Y{2}
, η̂X{1,2},Y{1,2}

),Observe that oe�ient ηXI ,YJ in (13) orresponds to the tail index of r.v. min(XI , YJ ) for whihmany estimators with good properties have been established (hill, pikands, maximum-likelihood,



22moments, power weighted moments, are the most known). Other estimators have also been pro-posed. For a survey see Coles et al. [5℄ (1999), Peng [21℄ (1999) and Draisma et al. [8℄ (2004).In a future researh, we intend to derive other estimators and respetive asymptoti proper-ties, as well as analyze and ompare them with the above mentioned estimators through simulation.A Appendix: ARMAX and pARMAX proessesWe derive some useful properties about proesses pARMAX in (36) and ARMAX in (37), bothwith Pareto-type marginal d.f. F given in (38). We denote left-end-point, x∗, and right-end-point,
xF = +∞. Formulation (38) means also that 1 − F is a regularly varying funtion at ∞ of order
−1/γ. Equivalently, we onsider a regularly varying tail quantile funtion of order −γ,

F−1(1 − t) = t−γLF−1(t), (A.1)with funtion LF−1 slowly varying at 0. Sine,
F (F−1(1 − t)) ∼ F

(
t−γLF−1(t)

)
= 1 − t

[
LF−1(t)

]−1/γ
LF

(
t−γLF−1(t)

)
,we have the following relation between LF and LF−1 :

[
LF−1(t)

]−1/γ
LF

(
t−γLF−1(t)

)
∼ 1, t ↓ 0. (A.2)(A.3)The stationarity equation of pARMAX in (36) is given by

F (x) = F (x1/c)FZ(x) .whilst for ARMAX in (37) it is given by
F (x) = F (x/c)FZ(x) ,Using the latest, we derive the respetive m-step transition probability funtions (t.p.f.) from x to

] −∞, y]: for pARMAX proess we have,
Qm(x, ] −∞, y]) := P

(
Xn+m ≤ y|Xn = x

)
= F (y)

F (y1/cm
)
1{

x≤y1/cm
}.and for ARMAX proess it is given by,

Qm(x, ] −∞, y]) := P
(
Xn+m ≤ y|Xn = x

)
= F (y)

F (y/cm)1
{

x≤y/cm
},where 1{.} denotes the indiator funtion.In the following we derive multivariate d.f.'s within eah proess.

• for pARMAX reursion in (36), we have
P (Xi ≤ y, Xj ≤ y) =

∫ y

x∗

Qj−i(x, ] −∞, y])F (dx) =
F 2(y)

F
(
y1/cj−i

) (A.4)Moreover, for the multivariate ase,
P (Xi1 ≤ y, .., Xik

≤ y)

=

∫ F−1(u)

x∗

...

∫ F−1(u)

x∗

Qik−ik−1
(
xik−1

, ] −∞, y]
)k−1∏

j=2

Qik−j−ik−j+1 (xik−j
, dxik−j+1

)F (dxi1 )

=
F k(y)

∏k
j=2 F

(
y1/cij−ij−1

)

(A.5)



23Observe now that,
F (F−1(1 − t)1/cj

) = F
(
t−γ/cj

(LF−1(t))1/cj
)

= 1 − t1/cj
Lj(t), (A.6)where

Lj(t) = (LF−1(t))−1/(γcj )LF

(
t−γ/cj

(LF−1(t))−1/cj
) (A.7)By (A.1)-(A.2), we have that

Lj(t) is slow varying, as t ↓ 0. (A.8)
• for ARMAX reursion in (37), in a similar manner we derive,

P (Xi ≤ y, Xj ≤ y) =
F 2(y)

F
(
y/cj−i

) (A.9)In the multivariate ase we have
P (Xi1 ≤ y, .., Xik

≤ y) =
F k(y)

∏k
j=2 F

(
y/cij−ij−1

)and
F (F−1(1 − t)/cj) = F

(
t−γ/cjLF−1(t)

)
= 1 − tcj/γ

Lj(t).where, by (A.1)-(A.2), we have
Lj(t) = (LF−1(t))−1/γLF

(
t−γ(LF−1(t))/cj

)
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