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Abstract: The usual coefficients of tail dependence are based on exceedances of high values but other
extremal events as upcrossings can also be used and provide useful information. In this context we define
upcrossings tail dependence coefficients and analyze all types of dependence coming out. These coefficients
are related with multivariate coefficients of tail dependence. Connections with measures of temporal depen-
dence as the extremal index and the upcrossings index, as well as, with some local dependence conditions
will be stated. Several illustrative examples will be exploited and a small note on inference will be given.
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1 Introduction

Measures to quantify the extremal dependence of a random pair (X,Y") started to appear in liter-
ature around the decade of 50. One natural measure is the so called “tail dependence coefficient",

A= lim PY > z|X > x)
rT—Tp

where xp is the upper limit of the support of the common marginal distribution F, provided the
limit exists. Loosely stated, A is the probability of one variable being extreme given that the
other is extreme. In the case, A = 0, the variables are said to be asymptotically independent
and if, 0 < A < 1, they are asymptotically dependent. Observe that, the boundary cases of
total dependence and total independence corresponds, respectively, to A = 1 and A ~ P(Y > x).
The importance of this class was recognized as far back as Geffroy [14] (1958/59), Sibuya [22]
(1960), Tiago de Oliveira [25] (1962/63) and Mardia [20] (1964). Coeflicient A is generalized to
the case of X and Y non-identically distributed, with marginal d.f., respectively, Fx and F\, by
transformation to Uniform margins, Fyx (X) and Fy (Y), and setting,

/\zlui?llP(Fy(Y)>u|FX(X)>u). (1)

In order to graduate the “strength" of dependence in the case of asymptotic tail independence
(A = 0), Ledford and Tawn [18, 19] (1996, 1997) have considered the following formulation that
states the rate of convergence towards zero:

P(X >z,Y >x)~P(X > x)l/"X’YL;XYY(l/P(X > 1)), a8 T — Tp (2)

where Ly is a slowly varying function at oo, i.e., Ly (tz)/Ly,  (z) — 1 as x — oo for any
fixed t > 0, and 7y € (0,1] is the “Ledford and Tawn coefficient". The coefficient 1y, describes
the type of limiting dependence between X and Y, and L(¢) its relative strength given a particular

value of 7x . Observe that equation (2) can also be expressed as

P(Y >z|X > 1)~ P(X >a)V/™xy71Lx  (1/P(X > 1)), as @ — ap
showing how A changes with 7y,,. Whenever 75, =1 and L} () — a as x — oo for some
0 <a <1 rv’s X and Y are asymptotically dependent with total dependence occurring if
a = 1. The random pair is asymptotically independent when either 75, < 1 or when 75, =1

with L7 () — 0 as x — oo. The case nxy > 1/2 corresponds to positive extremal dependence,



Nx.y < 1/2to negative dependence and 75, = 1/2 to (almost) independence (perfect independence
if Ly (x) =1). We can also generalize to the case of X and Y non-identically distributed, with
marginal d.f., respectively, Fx and F), by transformation to Uniform margins. For convenience

we take regular variation at point 0. More precisely,
P(Fe(X)>1—t,F(Y)>1—t) ~tY/"1XY L, (1), ast |0 (3)
where and L, , (t) is a slowly varying function at 0.

Observe that all these measures concern tail dependence based on extremal events of the type
{X1 > z} for large x, i.e. an exceedance of a high level z. Another extremal event of interest is the
upcrossing of a high level z, {X; < 2 < X3}. In an analogous way, we will state tail dependence
measures based on these latter. These new coefficients are related with the multivariate tail
dependence coefficients defined in Schmidt and Stadtmiiller [23], 2006 or in Ferreira [12], 2008, as
well as, with a multivariate formulation of the coefficient of Ledford and Tawn (Section 2).

In Section 3 we will see straight connections between tail dependence coefficients and local
dependence conditions, D’ (Leadbetter et al. [16]) and D” (Leadbetter and Nandagopalan [17]),
as well as, with the extremal index and the upcrossings index (Ferreira [11]). Section 4 is devoted
to several examples illustrating the previous results, including the well-known M4 processes and
Extended M4 processes (EM4) (Heffernan et al. [15] 2007). We also look at the sequence of
levels persisting in time, which was inspired by the modeling of tidal that persist for successive
time instants, under independent levels and under max-autoregressive dependence (Draisma [7];
Ferreira and Canto e Castro [10]). We end with some notes on estimation of the new coefficients
in Section 5.

2 Tail dependence through upcrossings

Let (X7,Y1) and (X3, Y2) be two random pairs identically distributed as (X, Y’), which has common
marginal d.f. F. As already mentioned, the usual tail dependence measures are based on the
extremal events “exceedances" by each margin. In an analogous way, we can state tail dependence
measures based on upcrossings. More precisely, similar to the tail dependence coefficient A in (1),
we consider the upcrossings tail dependence coefficients,

fyix = lim P(Y; <z < Y3|X; <z < Xa)
r—TF

and (4)
Hxy = zhnzl P(X1 <z < X2|}/1 <z < }/2)
—ITF
provided the limits exist,.

The boundary cases of total upcrossings dependence and total upcrossings independence be-
tween events {Y; < x < Yo} and {X; <z < X»} corresponds to, respectively, py x = fixy = 1,
and py x ~ P(Y1 <2 <Y3) and px;y ~ P(X1 <z < Xa).

We can also state coefficients iy and x|y generalized to the case of random pairs (X;,Y;) (j =
1,2) with marginal d.f., respectively, F'xy and F,. Considering, for instance, pyx, by transformation
to Uniform margins, Fx(X;) and Fy(Y;), we have,

Hyix = EQP(FY(YI) Su < Fy(Y2)|Fx(X1) < u < Fx(X2)). (5)

In order to distinguish coefficient A from coeflicients 1, x and pixy, concerning the tail depen-
dence, we give the following definitions.

Definition 2.1 A random pair (X,Y) is called asymptotic exceedances-tail independent if A = 0
in (1) and exceedances-tail dependent otherwise.



3

Definition 2.2 Random pairs (X1,Y1) and (X2,Y2) are called asymptotic upcrossings-tail inde-
pendent if iy x =0 or uxy =0 in (5) and upcrossings-tail dependent otherwise.

Next we relate coefficients fyx and g,y with the more general multivariate tail dependence
coefficient (Schmidt and Stadtmiiller [23], 2006; Ferreira [12], 2008),

w =P ) > w0 > 0| ) FE) >0 m 00 > )
iel,jeJ leL k€K

for non empty sets I, J, L, K C {1,...,n}.

Proposition 2.1 Coefficient piy,x given in (5) can be stated as
pvix = (1= XE0) [A = A A vy = AT A1y A ARy Ve Xy Y | (7)

where A\ = Ay, x5y = )\y{l}‘x{l}, AX) = AxX (51X and AY) = AYiay Y1y » Provided the existence
of these limits and \(X) #£ 1.

Proof. Observe that,
P(Fy (Y1) S u < Fy(Y2), Fx(X1) S u < Fx(X2))
= P(Fx(X2) > u, Fy (Ya) > )
—P(Fx(X2) > u, Fy(Y2) > u, Fy (Y1) > u)
—P(Fx(X2) > u, Fy (Y2) > u, Fx(X1) > u)
+P(Fx(X2) > u, Fy (Yz) > u, Fy (Y1) > u, F(X1) > u)
= P(Fy(Y2) > u|Fx(X2) > u)P(Fx(X2) > u)
—P(Fy(X) > ulFy (Y2) > u, Fy (Y1) > u) P(Fy (Ya) > ulFy (Y1) > u) P(Fy (Y1) > u)
—P(Fy(Y2) > ulFx(X2) > u, Fx(X1) > u) P(Fx(X2) > u|Fx(X1) > u)P(Fx(X1) > u)
+P(Fy(Ya) > u, Fx(X2) > ulFx(X1) > u, Fy (Y1) > u)-
P(Fy (Y1) > u|Fx(X1) > u)P(Fx(X1) > u)
and that
P(Fx(X1) Su< Fx(X3))=P(Fx(X2) > u) — P(Fx(X2) > u, Fx(X1) > u)
=P(Fy(X3) > u) — P(Fx(X2) > u|Fx(X1) > u)P(Fy(X1) >u) (9)
~ (1= u)[L = P(Fy(X2) > u|Fx (X)) > u)]

as u 1 1. Hence applying (6) we have (7). O

Corollary 2.2 Under the conditions of Proposition 2.1, if \X) # 1 and A\(Y) # 1, then

(- )‘(X))MY\X =(1- )‘(Y))NX\Y-



Proposition 2.1 states a very interesting feature about .y x (respectively, pxy by Corollary
2.2), as this coeflicient congregates both “temporal” and “spatial" dependence. We have temporal
dependence measured by AX) and A(Y) for time series {X;} and {Y;}, and “spatial" dependence
measured by )\ym|Xm for vectors (X;,Y;). Moreover it also includes the effect of temporal depen-
dence in a given “location" into another by coefficients Ay, v, ,, and Ay, |x,, ., as well as,
the effect of “location" dependence in time by coefficient Ax . v, 1x.,,v(1,

Remark 2.3 Events(),c7{Fx(X,) > u} in (6) can be replaced by min,e7{ Fx(X,) > u}. Hence the

multivariate tail dependence coefficient Ax; v,|x, v, 8 actually a bivariate one, as the originally

defined X stated in (1), for random pairs ( r}linJ{FX(Xi),FY(Yj)},l En}icnK{FX (X1), Fy (Yi)}).
wel,je el ke

Obviously, the dependence between consecutive random pairs (X7,Y7) and (Xs,Y2) plays a
role. Observe that, if they are (asymptotic) independent (A) = AY) = 0) then pxy = fiy;x =
A = Ayy1x, = Ayy x> Which makes sense because dependence only exists within each random pair.

By a similar procedure of Ledford and Tawn [18, 19] (1996, 1997), we consider a formulation
stating the convergence rate of P(Y; < z < Ys, X; <2 < X3) to 0, as * — x, in order to graduate
the “strength" of dependence within asymptotic upcrossings independence. More precisely,

P(X: <2< X2,Y1 <x<Ys) ~ P(Xy << Xo)/"IXLE (1/P(X1 <z < Xa)), (10)

asr — xF, where L;Y‘X is a slowly varying function at co, and the same conclusions for exceedances
concerning the Ledford and Tawn coefficient 7 ,, are derived. The coefficient v, x describes the

type of limiting dependence between upcrossings of X;’s and Y;’s, and L;Y‘X (x) its relative strength
given a particular value of vy, x. Expressing equation (10) as

PYi <z <Yy X; <2< Xo)~P(X; <2< Xz)l/”Y‘X_lLl*,Y‘X(l/P(Xl <z < Xy)),

we can also see how py x changes with vy x. When vy x = 1 and Ll*,Y‘X(;v) 4 0asx — oo we
have asymptotic dependence of the upcrossings (total dependence if Ly, « (z) = 1), and asymptotic

independence otherwise. The cases vy x > 1/2 and vy x < 1/2 correspond to, respectively, positive
and negative dependence, and vy;x = 1/2 an (almost) independence (perfect if L7 () = 1).
Similarly, we can also generalize to the case of X and Y non-identically distributed, by considering

P(F (X)) 1=t < F(Xy), F,(Y1) < 1—t < Fy(Y2))

(11)
~ P(Fx(X1) 11 < F(X2)) /" 1X Ly, (1),

as t | 0, where function L, , (t) is slowly varying at 0.

Remark 2.4 Observe that, under conditions of Corollary 2.2, in the case of upcrossings-tail depen-
dence, iy x and pixy might differ (see Ezample 4.2) and within asymptotic upcrossings extremal
independence, [ty x = px;y = 0. If we assume the condition (2) of Ledford and Tawn for the
random pairs (X1, X2) and (Y1,Y2), the strength of dependence measured by coefficient vy x and
respective slow varying function, stated in (11), will only change on this latter one. It is easy to

see if we rewritten expression in (11) as
P(Fy(X1) <1—-t < Fx(X2),F, (Y1) <1—t < Fy(Ya)) ~t""Ly(t), ast | 0,

where in the last step we have applied (9) and (3), with slowly varying function L,(t) = (1 —
tl/nxl’x2ilLﬁX1,X2 (t))l/yy‘XLVy\x(t) or ‘CV(t) = (1 - tl/nyl’}bilLﬁYl,Yz (t))l/VX‘YLVX\Y (t) and v =
Uy x = Vx|y. Therefore, the conclusion about upcrossings tail dependence or independence between
{Fx(X1) < u < Fx(X2)} and {Fyv (Y1) < u < Fy(Y2)} do not change, only the strength of
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dependence within the dependence case or independence case might differ. Therefore, from now on
we consider (11) with vy x replaced by v, i.e.,

P(Fx(X1) <1 -t < Fy(X2),F, (Y1) <1 -t < Fy(Y2))
12
~ P(Fyx(X1) €1 -t < Fx(X2))'/*L, (1), 12
with L, (t) = Ly, « ().

Now we formulate a sufficient condition for (12) throughout the 7’s coefficients. By definition
(3), 1/7 is the regularly varying index of r.v. min(X,Y’). Hence, the following extension for sets
I,J c{1,...,n},

P(Lapin (B 00 B 000) > 1 1) e #7000 L ), 13

where Lx, vy, (t) is a slowly varying function at 0, leads us to the coefficient nx, v, .

Proposition 2.5 Assume that (13) holds for any I,J C {1,2}. Let

n= max{nX,Yv NX (23, Y11,23 0 X (1 23, Y (1,230 X (1,23, Y 1,2} }

where nx,y stands for 1x ., v,y = N1X(1y,Y(1y and Ly is the corresponding slowly varying function
in (13).

(i) If n=nxy, then (12) holds with v = nx y, provided the left-hand side of (12) is non null;

(ii) If n # nx,y, then the left-hand side of (12) is null.
Proof. First observe that if I’ C I and J’ C J then
XYy Ly (8) > 00 Ly ().
On the other hand, from (8), (12) and (13), we have
P(Fx(X1) <1—-t< Fx(X2),Fy (Y1) <1—t < Fy(Y2)) (14)
~ Y7L, (t) {tl/nx,y—l/anﬁy(t)L;I(t) My i _l/an{z},Y{m} (£) Lo ()
P T v @) 0 T Ly (0 L)
= Y7L, () [a1(t) — az(t) — as(t) + as(t)] (15)

where a;(t) (i =1, ...,4) denotes the absolute value of the ith term in the product of the right-hand
side and satisfy the following properties:

(1) a1(t) > max{as(t),as(t)} > min{as(t),as(t)} > aq(t) > 0;
(2) a1(t) =1or a1(t) — 0, as t — 0;

(3) al(ﬁ) — az(t) — a3(f) + a4(t) Z 0.

Now we look at all the possibilities for 7.
If n = nx.y, then (15) becomes

YLy () [1 = az(t) — as(t) + as(t)] ~ Y11, (t), ast — 0,
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provided 1 — as(t) — as(t) + a4(t) is non null.
If = 1x4,,v(1.,, then (15) is equal to

YL () [ar (t) — 1 — as(t) + aa(t)].

By conditions (1) and (2) above, we have a1(t) = 1, and by (1) and (3) we have ag(t) > a4(t) and
—a3(t) + a4(t) > 0. Therefore, as(t) = a4(t), and hence probability in (14) is null.
If n= nX{1,2}1Y{2}7 then (15) is
1Ly (8)[a1(t) — as(t) — 1+ aa(t)],

and conditions (1) and (2) lead to a1(t) = 1, and by (1) and (3) we have ax(t) = a4(t). Hence
probability in (14) is null.
If 7 =X, 5y,v(1.0y, then (15) is equal to

YL, (t) la(t) — az(t) — as(t) + 1],
where, by (1) and (2), a1(t) = 1 = a2(t) = a3(t). Therefore, we also have (14) null. O
Observe that, in a similar manner, we extend the upcrossings tail dependence coefficient jiyx,

defined in (5), to the multivariate upcrossings tail dependence coefficient. More precisely, for sets
I,J,L,K Cc{1l,...,n},

KX1 Y| XL Yie = h]TlelP< () {Fx(Xi) Su< Fx(Xi1), Fy (Y;) Su < FY(YjJrl)}‘
“ i€l jed
(16)

N ) S 0 < FulXin), Fo(00) < 0 < B (V) )
leL,keK

Dependence also occurs when a single process is studied in terms of its temporal evolution.

More precisely, for a stationary process { X;}, we can state the above mentioned tail dependence
measures for random pairs (X1, X14,), i-e. observations separated in time by a lag m (m €
N). Hence, and considering marginal uniform normalization, we have the lag-m tail dependence
coefficient,

Am = lui?llP(F(Xler) > u|F(X1) > u), (17)
as well as the lag-m Ledford and Tawn coefficient, 1., such that
P(X, > F Y1 =), X140 > F7Y 1 =) ~ tY" L (t), ast | 0 (18)
or, equivalently,
P(Xiim > F Y1 =t)|X, > F Y1 —t) ~ tY/"™ 1L, (1), ast | 0 (19)
where F' is the marginal d.f. of process {X;} and L,,(t) is a slowly varying function at 0.
Similarly, we state the lag-m upcrossings tail dependence coefficient
pm =M P(F(Xo ) < 0 < F(Xgpm)|[F(X1) < u < F(X2)), (20)
and also, as t | 0,
PXi <FY1-t) < Xo, Xoym < F7Y1—-1) < X34m)

~P(Xy S F7H1—t) < X)Ly, (t),



or, equivalently,

P(XQer < F71(1 — t) < X3+m|X1 < F71(1 — t) < XQ)

(22)
~P(X; < F Y1 —1t) < Xp)V/mm=1L, (1),
with function L,, (t) slowly varying at 0.
Corollary 2.6 For the lag-m upcrossings tail dependence coefficient in (20), we have
fim ~ (L= A1) P\erl — AmAB34m|2,24m) — M AB4m(1,2) T AlA{2+m,3+m\l,2}:|a (23)

where we take Nx, ;1x, , = A1y, since there is no ambiguity, provided the existence of these
limits and A\, # 1.

As stated in Proposition 2.5, the coefficient v, relates with Ledford and Tawn coefficients
throughout:

P(Xl < F_l(l _ t) < X2)1/UmLum (t) ~ tl/ﬁm+1Lm+1 (t) _ tl/ﬁ{2,2+m,3+m}L{2)2+m13+m}(t)

_tl/ﬂ{1,2,3+m}L{112)3+m}(t)+ tl/n{l,2,2+m,3+m} L{1,2,2+m,3+m}(t). (24)

Remark 2.7 In applying the multivariate tail dependence coefficient (6) to consecutive r.v.’s of a
sequence { X;}, we are actually computing a bivariate tail dependence coefficient (see Remark 2.3) of
a random pair of levels persisting in a fized period of time, (min{X1, ..., X, }, min{X, 1, ..., Xs})
that will be studied in Section 4.2.

3 Extremal Index and Upcrossings Index

For a stationary sequence {X;}, some local dependence conditions concerning extremal events have
been considered leading to short-range dependence measures, e.g., the extremal index 6 (Leadbetter
et al. [16], 1983) and the upcrossings index n (Ferreira [11], 2006), related with the presence of
clustering of, respectively, exceedances and upcrossings of high levels u,,.

Definition 3.1 Condition A (uy) will be said to hold for {X;} if any, — 0 for some sequence

I, = o(n), where

a(n,l) = 1<il£71{|P(A NB)— P(A)P(B)|: A€ B (un), B € By (un)},

and Bf(un) denotes the o-field generated by {X;, ..., X;}.

Condition D(u,) will hold if we are under the same assumptions of condition A(u,) above, but
restricted to the events {X; < wu,}, i < s <j.

The local dependence condition D’(uy,) considered in Leadbetter et al. [16] bounds the proba-
bility of more than one exceedance of u,, on a time-interval of r,, = [n/k,] integers with k,, — oo,
as n — oo.

Definition 3.2 Condition D' (u,) will be said to hold for {X;} if for some sequence {k,} such
that k, — oo, we have

n— oo

1imsuanP(X1 > Up, Xj > un) =0.



Under condition D’(u,,), the exceedances of levels u,, tend to come out isolated, similar to
an i.i.d. behavior, leading to unit extremal index. If condition D’(u,) doesn’t hold, then the
exceedances of u, tend to cluster. For such sequences, Leadbetter e Nandagopalan [17] stated
another local dependence condition, D" (u,,), weaker than D’(u,) (under D" (u,) all values 0 <
6 < 1 are possible), that inhibits rapid oscillations near high levels and hence restricts the local
occurrence of upcrossings {X; < u, < X411}

Definition 3.3 Condition D" (u,) will be said to hold for {X;} if condition D(u,) also holds and
(kn)n is such that

kp — 00, knony, — 0, kply/n — 0, (25)

kn(1 = F(uy)) — 0 and

rn—1

limsupn Z P(Xl > Up, Xj <up < Xj+1) =0.
j=2

n—oo

Condition D" (u,) can be slightly weakened by replacing “X7 > u," by “X; < u,, < X»" as we can
see in the proof of Proposition 4.3.5 of Leadbetter and Nandagopalan [17].

For stationary normal sequences, if the covariances between X; and Xj;, pj;_j|, satisfy the
Berman’s condition Y - p2 < oo, then D(u,) and D’(u,) hold for appropriate sequences {uy}.
We shall present in the next result a sufficient condition for D’(u,) and D”(u,) throughout the
above dependence coefficients {A,} and {pn}.

Proposition 3.1 Let {X;} be a stationary sequence.

1. If nP(X1 > uy,) — 7 > 0 then D' (uy,) holds if and only if E;lz Aj—1(un) — 0 for any

sequence {r, = [n/ky)} with {k,} satisfying (25), where \j(un) = P(X14; > un|X1 > un),
73> 1.

n

2. If nP(X; < up < Xo) — ¢ > 0 then D" (u,) holds if and only if Zgzgl i—1(un) — 0

for any sequence {r, = [n/k,]} with {k,} satisfying (25), where p;(un) = P(Xoq; < uy <
X3+j|X1 <l<u, < XQ), 7> 1.

Proof. Observe that condition D(u,,) is given by

limsup nP (X1 > u,) Z Nj—1(un) =0,

n—oo

=2
and condition D" (u,,) becomes
rn—1
limsup nP(X; < u, < Xo) Z pi—1(up) =0. O

We remark that if condition D’(u,,) holds for u,, = e satisfying nP(X; > ug)) — 7, then we

find \; = 0, ¢ > 1, provided the existence of these coefficients. Analogously, from the statement
in 2., if D" (u,,) holds for u,, = qu) satisfying nP(X; < u,(f) < X9) — ¢, then if the coefficients p;
(i > 1) exist they must be null.

Consider notation M; ; = max{Xj,...,X;} for i < j and M;; = —oo for i > j.

Definition 3.4 Condition D) (u,,) holds for {X;} when for some k,, as in (25),

nP(X1 > uy > Moy, Mii1,, > ty) — 0.

n—oo
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The family of conditions D) (u,,), for k& > 1, considered in Chernick et al. [6] (1991) are
sufficient to derive
0= lim P(My; <uD|X; >ul)

when the limit exists, where levels v satisfy nP(X1 > u{7)) — 7, as n — oo. Under D' (u,(7))=

D(l)(u,(f)) we have § = 1, and D(® (usf)) leads to ¢ = 67, where ¢ = lim,,_.oc nP (X1 < u, < X2).

We now relate 6 with the multivariate tail dependence coefficients.

Proposition 3.2 If the stationary sequence {X;} satisfies D) (ug)), then the extremal index is
given by

0 = 1= > A+ D Augn+o+EDF Ny, (26)
2<i<k 2<i<j<k

where A1y = A\i—1 given in (17), provided these limits exist.
Proof. Just observe that, as n — oo,

0 ~ 1- > PXi>ulXi>u)+ > PXi>ul), X;>ul)|X) > u))
2<i<k 2<i<j<k

Fot (CDFP(Xy > ul) L X > a1 X > W), O

According to the remark after Proposition 3.1, we will find 6 = 1 under D’ (ug)), since we have
0< >‘i1,...,ip\l < >‘i1\1 = )\1‘1,1 =0, for any integers 1< <... < ip.

Replacing exceedances with upcrossings in the condition D*)(u,,) a generalization of condition
D" (u,) takes place. This new family of local conditions, slightly stronger than D®) (u,,), is defined
below (cf. Ferreira [11]).
Consider notation Ny, (B) = Y1 1(x,<u, <x:.,)0i/n(B), B C [0,1], and Ny[i/n,j/n] = N,
Definition 3.5 For any k > 2, {X;} satisfies condition D® (u,,) if condition A (u,) holds and
TLP(Xl <up < X2,N3)k = 07Nk+1,rn > 0) — 0,

for some sequence v, = [n/ky] with {k,} satisfying (25).

We now define the upcrossings index, ¢, which, as already mentioned, can be viewed as a
measure of clustering of upcrossings of high levels w,, by the r.v.’s in {X;}.

Definition 3.6 If for each ¢ > 0 there exits {175?} such that nP(X; < u) < X2) — ¢ and
P(Nn(ﬂgf)) = 0) — exp(—1%), for some constant 0 < ¥ < 1, then we say that the sequence {X;}
has upcrossings index 9.

Hence, under conditions A(u,) and D® (u,(f) for some k > 2 and for each ¢ > 0, then the
upcrossings index of {X;} exists and is equal to ¢ if and only if

P(N3 (i) = 0/X; <7l < Xp) — 0,

for each ¢ > 0 (Corollary 3.1 in Ferreira [11]). We also have the following relation between the
upcrossings index and the extremal index:

h="09 (27)
T

A relation between p and the multivariate tail upcrossings coefficients defined in (16) can also
be stated.
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Proposition 3.3 If the stationary sequence {X;} satisfies D®) (u,(f)), we have,

Vo= 1= Z /J‘{z|1} + Z /J’{ZJ|1} + ...+ (_1)k+1y‘{2 ..... k|1}> (28)

3<i<k 3<i<j<k
where pug1y = pi—2 given in (20), provided the existence of these limits.

Proof. Straightforward by considering,

9 o~ 1—= > PXi<ul) < Xip| X <ufl) < Xo)
3<i<k

+23§i<j§k P(Xl < ug) < Xi—i—lan < ug) < Xj+1|X1 < ug) < XQ)
o (—1)FP(X5 < ul) < Xyy o, X <0l < X)X <l < X)),
asn —oo. O

Under condition D® (qu)) we will find ¥ = 1 as a consequence of Proposition 3.1.

4 Examples

In this section, we illustrate the statements above with some examples.

Example 4.1 Let {Y,}n>_2 be an i.i.d. sequence of standard uniform distributed r.v.’s. Con-
sider {Xpn}tn>1 such that X, = max(Y,,Y,—2,Yn_3). This sequence has 0 = 1/3, ¥ = 1/2
and satisfies conditions A(uy) (it is 4-dependent), D® (uy,) and D® (uy,) for levels u, such that
nP(X1 > uy) LT 0 (Ferreira [11]).

We compute the tail dependence coefficients, A, and 1y, given in (17) and (18), respectively.
Observe that,

P(X: > u,X14m >u)=1—P(X; <u) — P(X14m <u)+ P(X1 <u, X14m < u)
=1-PY1 <u, Y1 <u,Y o <u)— PYi4m <u, Y1 <u, Yo <u)+
PYr <u, Yoy <u, Yoo <u,Yigm Su, Y1 Su, Yoo <u)
=1—2u® +u’lyp<ay + ublpnosy,
and hence,

P(Xl > u, X1+m > u) 12434

5
= 1 1 3 1
P(Xy > u) T Lm<ay + (L= w?)1pmsa)

12wl 1 oy + P(X) > u)1 sy,

1—u3

leading to Ap = (1/3)1{m<3}y + 01453y (observe that 0 =1 — Ay — A2 and D' (u,) does not hold).
Taking u =1 —t, we obtain, for m < 3,
P(Xl > 1—t,X1+m > 1—t>
P(Xl >1-— t)

~1,t]0.

Therefore, by (19) nm =1 1m<sy + (1/2) - 1pnssy and Ly (1) = 1.
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Now we compute the tail upcrossings coefficients, iy, and Ve, given in (20) and (21), respec-
tively. Observe that,

P(X;<u<Xy)=P(X; <u)—P(X; <u,Xy<u)
=PY1 <u,Y_1<u,Yo<u)—PY1<u, Y1 <u,Y o<uYs<uYy<uY_ <u)
=ud —ud =u(1 —u?)
and that,
PXi<u<Xo, Xotm <u< Xsim)
=P(X; <u,Xotm <u)— P(X7 <wu, Xogm <u, Xy <u)
—P(X; <, Xogm <u, Xzpm <u)+ P(Xy <u, Xopm <u,Xo <u, Xsim <u)
=PY1 <u,Y_1 <u,Y o <u,Yoim <u, Y <u, Y1 <u)
—PY1 <u, Yoy <u, Yoo <, Youm <u, Y <u, Y1 <u, Yo <u, Yo <, Yoy <)
—PY1 <, Yoy Su, Yoo <, Youm Su, Yo <u, Vi1 S, Yaim S, Yigm <u, Y1 < u)
+PY1 <u, Y1 <u, Y o<u,Yorm <u, Yy <u, Y1 <u,Yo<uYy<uY_ ;<u

a}/Ser S u7}/1+m S uamel S u)
— uﬁ(l _ u2)2

provided m > 3. If m = 1, we have,
P(X; <u< X9, X3 <u< Xy4)=u(1—u)
if m = 2, then
P(X; <u< X, Xy <u<Xs)=u(1—u—u?+ud)
and m = 3,
P(X; <u< X, X5 <u< Xg) =ub(1 —u—u?+ud)

Hence, by (20), we obtain p1 = 1/2 and pm = 0 for m > 1 (observe now that 9 = 1 — p; and
D" (u,) does not hold too). Replacing u by 1 —t in the above expressions, we have successively, as
t|o,
P(Xl < 1—t<X2,X2+m < 1—t<X3+m)
P(X1 < 1—t<X2)

~ (=132 (1= (1—t)2) ~2t

provided m > 3, whereas for m =1,

P(Xlgl—t<X2,X3§1—t<X4) 1

P(X; <1-t<X,) Tt
form =2,
P(X; <1—t< X5, X4<1—t<X5) (=12 ~t
P(X, <1-t<Xy)
and m = 3,
P(X; <1—1< Xy, X5<1—1t< Xg) (1= 1)~ t

P(Xlgl—t<X2)
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Therefore, from (22) we derive v = 1 and L,,(t) = 55 —t corresponding to tail upcrossings

dependence, and for m > 1, v, =1/2 and L, (t) =1, i.e., an almost total independence.

Example 4.2 Let {Y,}n>_2 be an i.i.d. sequence of standard uniform distributed r.v.’s. Consider
{(Xn1, Xn2}tn>1 such that X, 1 = max(Yy,Y,—2,Y,—3) and X, 2 =Y,41, n > 1. We have,

P(X1,2§u<X2y2)=P(Y2§u<Y3):u(1—u),
as well as,
PXi1<u<Xo)=PY1 <u,Y_1 <u,Y o<u)—PY; <u, Y1 <u, Yo <u,Ys <u,Yp<u)

=ud —u® = u3(1 — u?),

and also,
PX12<u<X99,X11<u<Xs1)
= PYoa<u<Ys;,max(Y7,Y_1,Y_2) <wu < max(Y2,Yy,Y_1))
= PYa<u<Vs,Yi<u,Y_ i <u, Y o<uY,<u) )
= ut(1—u)?
Hence,

n= 11%P(X1)2 <u< X2)2|X1)1 <u< Xg’l) =0= II%P(Xl,l <u< X2)1|X1)2 <u< XQ)Q).

u

Observe now that,

P(Xl’z §17t<X2,2,X1,1S17t<X2’1)
P(X1,2<1—t<X2,2)

~ P(XLQ <l-t< X2)2)(1 — t)z, ast l, 0,

leading to v = 1/2 with L,(t) = (1 —t)?, and that

P(X1’2S17t<X2’2,X1’1S17t<X2’1) ~ t(l—t)
P(X1,1§17t<X2,1) 2—t

:t(l—ﬁ), ast | 0,
hence v =1/2 with L, (t) =1 — 5.

Now consider sequence {( Xy, 1, X 2}n>1 such that X, 1 = max(Y,,,Yn—2,Y,—3) and X, 2 =Y,
n > 1. Only the joint probability in (29) changes, becoming

P(X12<u<X09,X11<u<X01)=PYo<u<VYs,max(Y1,Y_1,Y_2) <u < max(Ys, Yy, Y_1))
=PYo<u<Y3Y, <uY_;<uY ,<u)
=u3(1 —u).

Therefore we have upcrossings-tail dependence, since,

li%rllP(XLz <u< X272|X1)1 <u< X2,1) = 1/2 and li%rllP(lel <u< X2)1|X172 <u< X272) =1,

the last one corresponding to perfect dependence.
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4.1 M4 processes

Smith and Weissman (1996) extend Deheuvels’ definition to the so called multivariate maxima of
moving maxima (henceforth M4) process:

Yia= mlaxm]iixal7k7d2l)i_k, d=1,...D,—0c0 <1< o0,
for nonnegative constants {a;ya,l > 1,—00 < k < oo} satisfying > ;o > re . aika = 1 for
d=1,..,D,and {Z;,l > 1,—0c0 < k < oo} being an array of independent unit Fréchet random
variables which have distribution form F'(z) = exp(—1/z), 2 > 0. These are very flexible for tempo-
rally dependent multivariate extreme value models. The tail dependence concerning exceedances,
i.e., tail dependence coefficients

A, = lim P(Yl-i-r,d’ > CL‘|Ylyd)

ddl,

and analogous extended versions, 7, , of Ledford and Tawn coefficient, 1, have been derived in
Heffernan et al. [15] (2007). More precisely,

—1
P(Yl)d <z, Y1+r,d’ < I) = exp{ E E max al k,ds Ol k+r, d') }
=1 k=—cc
and, as r — oo,

o0 o0 o0 oo
1 _
eXp{ E E max(a k,d, Ol k+rd )T } ~1- E E max(ay k,d, Gl ktr,d )T

=1 k=—c =1 k=—00
and
(M4) oo [eS) (M4)
Agar - =2 - D11 Dok oo MAX(AL kd, O k4rar)  and Naa,, = 1-

Hence, for sufficiently large =z,
PYryr0 <z <Yriouw, Y10 <z <Ysq)

=PYr10 <z, Y14<z)—PYri10 <x,Y14<x,Y24<1)

—PYrprao <z, Yia<a, Yo <x)+ PYie <, Yiag<a,Yog< 2, Y00 <)

oo oo
—1
—eXp{ - E E max(ay k,d, 1, k+r,d )T }

=1 k=—0c0
—1
—eXp{ Sy Yo max(ayk,d, U ktrd s OLk+1,d)T }
o0 oo
—1
—exp{ g E maX(az,k,d,al,k+r,dual,k+r+1,df)$ }
=1 ke’ (30)
o0 o0
1
+6Xp{ E E max(a g, d, Gl k+r,d’ s O k+1,ds Ol k+r41,d" )T }
=1 k—oo
o0 oo oo o0
-1 _
NE E max(ay,k,d, Ol k+r,d’ > O, k+1,d)T +§ 5 max(ay,k,d, Gl k+r,d > Ol k+r+1,d" )T
l=1k=—00 I=1k=—00
oo o0 oo o0
1
—g E max(ay, k,d, al k-4r,d )T —g g max(a, k,ds A ktr,d’ s O k+1,d> Clktr41,d" )&
l=1k=—0c0 l=1k=—00

=Azx~!

)
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and also

PMa<z<Ysq)=PY1ag<2z)—PMY1,a<zYsq<x)

oo [ele]
~ N o max(arkas k)T =Y Y avkar!

1=1 k=—o00 (31)
— Ei’il Zzoz,oo max(ayk,d, al,k+1,d);v_1 _ gl

= Bzt

)

which is non null if a; 1, 4 is non decreasing as a function of &k (otherwise upcrossing events, {Y; 4 <
x < Yiy1.4}, would be impossible). Therefore, under this assumption, by (30) and (31), we obtain,

pMY = P(Y 0 <2 <YrppawYia<az<Yoq)~ 5

dd’.

(M4)

corresponding to upcrossings-tail dependence. Hence, v
2

LV(M4) = A/B
dd?,

= 1 with slowly varying function

Since all variables in model M4 are asymptotically dependent, Heffernan et al. [15] (2007)
propose an extension in order to include also asymptotical independence. More precisely, they
present

Y; 4 = max (Uil)éa,mlaxmgxalykdel,i,k), d=1,...D,—0c0 <1< oo, (32)

where a > 0 and {U; 4, —00 < i < 00,d = 1, ..., D} are an array of positive independent r.v.’s and
independent of Z; ;. As before we consider unit Fréchet marginals.

Observe that we now have,
P(Yia < @) = exp{—a—" — 271}

as well as,

o0 oo
P(Yl,d <z, YlJrr,d/ < I) = eXp{ — 27 — Z Z max(alvkyd, a17k+7«7d/)$1}.

=1 k=—oc0

In this case, we have,

)\(EM4)_{ 0 ,a<l1 (EM4)_{ max(1/2,a) ,a<1

dd;, A sy and g 1 La>1

See Heffernan et al. [15] (2007) for details.
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Similarly to (30) and (31) we derive successively,
P(Yrii,a0 <z <Yrpoa, Y14 <2 <Yay)
= Py, <2, Y1g<z)—PYrj1,0 <2,Y14<z,Ysq<2x)
—PYrj1,0 <z, Y1a<z,Yiou <)+ PYrpa <z,Y14<2Y i<z Y ios <z

oo oo
= exp{ — 27 — E E max(al,k,d,al)kJrT)d/)x_l}

=1 k=—o00

_ o %) —1
—exp { =327 =30 Y e o max(a k,d, Ol ktrd’ > Ol k41,d) T }

o0 o0
- —1
- GXP{ — 327 — E E max(ay k,d, O k+r.d’ > O k+r+1,d" )T }

=1 k=—oc0

oo oo
- —1
+exp{ — 47 — E E max(ar, k,ds Al k-4r,d s O k+1,d> O k+r+1,d" )T }
=1 k=—0c0

~ Azl 43272

and

PVag<z<Yyy)=PYig<2)—PM1a<uzYsq<czx)

o0 oo
_ 0o 9 —1 -1
~ x4y Y el o max(agkds G k41,d) T — g E apk,d%
=1 k=—0c0

= 27 *4+ Bzl

Therefore, denoting ugf,M 4) for extended M4 process in (32), we have

'udd/r (M4) 5 if a > 1

ddl.

(EM4) _ 0 ,ifa<l
1

When a < 1, as z — oo,

P(}/’I"+1,d/ <z< }/fr+21d/, Yl,d <z < }/Q)d) Ax~1 + 3p 2

1/U(EM4) 1/V(EM4) )
P(Yia <z <Ypq) [z=@ + Bx—1] e
which implies, y§5M4) = max(1/2,a) with slowly varying function L (s (z) = 3l{a<ijo) +
" dd’ -

Al{a>1/2}. If « > 1, then V§5M4) = Vo(li‘,“) = 1 with slowly varying function LV(EMAL) = LU<M4>.
T T dd dd},

Observe that coefficient V§5M4) coincides with ng;E,M‘l) in (33).
4.2 Levels that persist for a fixed period of time

The main objective of an extreme value analysis is to estimate the probability of events that are
more extreme than any that have already been observed. By way of example, suppose that a
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sea-wall projection requires a coastal defense from all sea-levels, for the next 100 years. Extremal
models are a precious tool that enables extrapolations of this type. However, an adverse situation
may also be the permanency of high values in time. Draisma [7] broaches this problem with regard
to successive high tide water levels registered on some places of Holland’s coast which may damage
the sand dunes and hence give rise to devastating floods. More formally, given a time series of
water levels, { X1, ..., X, }, he presents a new sequence {Y;}, such that,

Y; = min(X;, ..., Xits), (34)

where s is some fixed positive integer, that is, {Y;} is a sequence where each observation y; is
a value that persist for s + 1 successive periods of time. We will look at the extremal behavior
of {Y;} by considering first that {X;} is an i.i.d. sequence and then considering two particular
stationary cases of {X;}: pARMAX and ARMAX. The sequence {Y;} is obviously stationary,
hence it exists a common marginal d.f., which we will denote by Fy. In the following we will use
notation a; = F7 (1 —t).

4.2.1 {X;}is iid.

Let {X;} be an i.i.d. sequence. We have that {Y;} satisfying (34) is (s + 1)-dependent and satisfies
condition D’ (u,,) (Leadbetter et al. [16], 1983). Assuming the regularly varying condition (38) and
given the independence of {X;},

1= Fy(a) = (1= F@))* =2~ 7070 (Le(x)
and hence, v, = /(s + 1). Observe also that
Fyi(1—t) = F~1 (1 —¢/6HD),
Considering the random pair (Y1, Y14,) composed by two r.v.’s with a lag-distance m, we have
t1+m/(s+1) ,m S s

P(Yi> Fy (1= 1), Yism > iy (1-1)) =
t2 ,m>S.
and hence, n, = (s +1)/(s+m+1) for m < s and n,,, = 1/2 for m > s, with L,,(t) = 1 for all
m € N (for details see Ferreira and Canto e Castro [10], 2008). It is straightforward that A}’ =0,
for all m € N, and hence, by (23), u(X” = 0, which agrees with the fact that condition D’(u,) holds

and 0§ = 1 (Ferreira and Canto e Castro [10], 2008). From (28) we also have ¥ = 1.
Now we focus on the calculation of coefficient v{}”. Note that,

P(Yoym <z <Ysim, V1 <z <Ys)=0, ifm<s. (35)
For m > s, given the independence and stationarity of sequence {X;}, we have
P(Yaym <2 <Vaym, Yo <z <Y))=P(Y1 <z <Y3)?

and hence, vy =1/2 and L ) (t) = 1.

4.2.2 {X;} is stationary: pARMAX and ARMAX

As already mentioned, the motivation for studying the sequence of levels that persist for a fixed
period of time emerges from its potential applicability to natural phenomenon data. Whenever
the independence seems an unrealistic assumption, we must consider dependent models. Max-
autoregressive processes have revealed very useful in what respects the extremal analysis of time
series. We consider for sequence {X;} the processes, pARMAX and ARMAX, defined below in
(36) and (37), respectively, given their suitably for extreme values modeling, easily derived finite-
dimensional d.f.’s and quite different tail behavior concerning measures based on exceedances of
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high values. See Ferreira and Canto e Castro [10] for details.

Consider {Z;} a sequence of i.i.d. copies of r.v. Z with positive support and marginal d.f. F,.
A sequence {X;} is said to be a pARMAX process if,

X;i=XC ,VZ ,0<c<l, i=0+1,42, .. (36)
and is said to be an ARMAX process if,
Xi=cX;1VZ;,0<c<1, 1=0,4+1,42,... (37)

with X; independent of Z;, for all integer ¢ < j. For the sake of stationarity in the pARMAX case,
the innovations {Z;} have support in [1, ool

We start by analyzing the processes themselves (some auxiliary calculations are in Appendix),
then we study sequence {Y;} of levels ARMAX and ARMAX persisting in time. We shall always
consider, both with Pareto-type marginal d.f. F’,

1—F(z) =2 Y7 La(x), (38)

where L is a slow varying function at +o0o and v (the tail index) is positive, which is the most
interesting case. Let {X;} be a pARMAX process satisfying (36). Based on relations (A.4)-(A.8),
we have that, as t | 0,

P(X1 > F 1 —t), X14m > FH1 = 1)) ~ 1 encrjoy + 6 Liomsi o

and hence, by (18), we obtain 7,, = max(1/2,c¢™) and L,,(t) = L.1iem<i/2y + Lin(t) Iiem>1/2y
with £,,(t) defined in (A.7) (see Ferreira and Canto e Castro [10] for details). We have A,, = 0,
for all m € N and hence, by (23), we also have u,, = 0. Observe that in pARMAX processes the
local dependence condition D’(u,,) holds and the extremal index is unit (§ = 1 — A;). By relation
(28) we have also an unit upcrossings index (i.e., 9 =1—pu; = 1).

For a process {X;} satisfying ARMAX recursion (37), we have that, as ¢ | 0,
P(X1>F Y1 —1),X14m > F 11 —t)) ~ te™”

which leads to, 7, = 1 and L, (t) = ¢™/7, for all m € N (see Ferreira and Canto e Castro [10] for
details), and hence we have A, = ¢™/7. In the ARMAX processes the local dependence condition
D’(u,,) does not hold and § = 1 — ¢'/7 (Alpuim [1] 1989), which is in agreement with, respectively,
Propositions 3.1 and 3.2 and remarks therein.

Analogously, and replacing ¢ by 1 — u, we can obtain the following probabilities, as u T 1, in
order to derive p,, in (23):

Atmiz4m2y ~  P(F(Xs4m) > u[F(Xo4m) > u, F(X2) > u)

1—-3u+ u? + u? u? u3

+ —_
—G—we! —(—wcnFD —(-we —(—we —G—we!
~ 1-(-wel/Y Ti-(ow "I QM =0 wenT (=Gowem ) G=Gowel ) (39)
(m+1)/ TG
m-+1
~ ST Ly
cm/7 (1—u) ’

Aisrmiz1y ~  P(F(Xs4m) > u|F(X2) > u, F(X1) > u)

1—3u+ u? + u? + u? _ w3
~ 1-(1—wecl/Y "1+ /y T a—w)e(m+2)/ v a—a—w) MDD/ —(1—w)el/7) (40)
2
1—2u+ 1

1—(1—u)el/7
M/ (1 _q)

(i) cm 1/,
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and
)‘{3+m,2+m|2,1} ~ P(F(X3+m) > u, F(X2+m) > U|F(X2) > u, F(Xl) > ’LL)

_ 2u? 2u> u? u?
1—4u+ 1—(1—u)ct/™ + 1—(1—u)c(m+1/~ + 1—(1—u)c(m+2)/~ + 1—(1—u)em/~

~

203 (1—(1—w)c/") "1 2u(1—(1—u)c/") "t | wi(1—(1—u)c!/7)2 (41)
- (1—(1—u)cm+1/7) - (1—(1—u)c™/7) + (1—(1—wu)cm/7)

2
[1 —ou+ 71_(1;)01/7}

+2
() (1) /oy
cl/7(1—w) ’

~

Hence, by (23), we also obtain p,, = 0 in the ARMAX process. The local dependence condition
D" (u,,) holds (Canto e Castro [3], 1992) and by (28) we obtain upcrossings index 9 = 1.

Now we compute coefficient v, in (21). Consider first the pARMAX process and a; = F~1(1—
t). Based on the pARMAX relations (A.4)-(A.8), after some calculations we derive, as ¢t | 0,

E’m+1 (t)a

m+1

P(Xngm > ay, Xo > CLt) ~ 12 + ti/e
P(Xsgm > at, Xoim > ap, Xo > ay) ~ 3 + /<" L1 (1),

P(X3pm > ap, Xo > ap, X1 > ag) ~ 3+ tl/cm+2£m+2(t)
and
P(Xspm > ap, Xoqm > ap, Xo > ap, X1 > ag) ~ t4 4 12/°L1 (8)% + /77 L, 1o (1)
Therefore, we have that,
P(X1 <F M1 —1) < Xo, Xowm S F U1 — 1) < Xapm) ~ 12 = 263 12 12/ L (1)% ~ 12

and also P(X; < F71(1 —t) < X3) ~ t. Hence, by (21), we have v, = 1/2 and L, (t) ~ 1 for all
m € N which corresponds to (almost) total independence. (See Proposition 2.5).

For ARMAX process, if we apply (39)-(41) in (24), we have,

/v Ly, (£ telm D/ gmtD/y _ pomE2)/y | gelm+2)/7

leading us to a null limit. Going further on the rate of the approximation and based on relations
(A.9)-(A.10), after some calculations, we obtain

P(Xy <F7'1—1t) < Xo, Xopm < F7H1—t) < Xaim) ~ (1 — V)21 —c™/M)2, ast ] 0,

as well as, P(X; < F~1(1 —t) < X3) ~ t(1 — ¢'/7). Hence, according to (21), we have v,, = 1/2
and L, (t) = (1 —c"/7)(1 —c™/7).

Now we turn to the sequence {Y;}. Deriving results in a dependence context for {Y;} involves
more calculations and so, in the sequel, we restrict ourselves to the case s = 1 in (34), though we
presume that similar results will be valid for any finite s.

We treat first the case where {X;} is a pARMAX process as in (36). Based on relations
(A.4)-(A.8) and after some calculations, we have, for m > 1,

P(Yl-‘rm > ag, 3/1 > a/t) ~ tzl{cmgl/Q} + tl/cmﬁg_),’_l (t)l{cm>1/2} (42)
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where slow varying function E;Y)(t) is given in (A.7) (details can be seen in Ferreira and Canto
e Castro [10], 2008). Hence it is straightforward that \}) = 0 (agrees with the fact that D’ (u,)
holds and § = 1). The case m = 1 is similar. Therefore, by (23), we obtain p{’ = 0 for
all m € N (hence ¥ = 1). Note that, from (42), we have n(Y) = max(1/2,¢™) and LY (t) ~

Liem<iyay + Loy () 1em>1/2)-
In order to compute v\, observe that,
P(Yoim <o < Y31, Y1 <2 <Ya)
= P(Ysim>z,Y2>12)— P(Ysym > 2, Yorm >2,Ys > x)
—P(Yspim >, Y1 >2, Yo > )+ P(Yapm > 2, Yorm > 2,Y2 >2,Y] > 1)
= P(Xi<z,Xoym<z)—P(Xy <z,Xo <, Xopm <2)
—P(X; <z, X3 <x,Xoym <z)— P(X1 <z, Xopm <2, Xgpm < 2T)
—P(X1 <2, Xotm <2, Xaym <z)+ P(X1 < 2,X2 < 2,X3 <2, Xoym <)

P

+

X1 <2, Xo <2, Xopm <, Xzim <)+ P(X1 <2,Xo <2, Xoim <z, Xgpm <)

+
e
>

<z,X3 <z, Xoym <2, Xapm < x) +P(X1 <z,X3 <z, Xogm <2, Xgpm < x)

P

+
>

<, Xoym <, Xzym < T, Xgym < )

(
(
(
(Xa
(X1
—P(X,

<z, Xo<x,X3<x,Xogm <2, Xspm <)

|
)

(X1 <z, Xo <2, X3 <, Xoym <z, Xg1m <)
—P(X1 <z, Xo <z, Xoym <, Xstm <z, Xg4m <)
—P(X1 <z, X3 <z, Xoym <, Xstm <z, Xg4m <)
+P(Xi <z, Xo< 2, X3 <2, Xogm <2, Xzpm < T, Xgpm < ).

As already noticed in (35), the probability above is null if m = 1. By (A.4) and (A.5) and recalling
notation a; = F7 (1 —t), we have

P(Yoym < ar <Yz, Y1 <a; <Y3)

F2(at) Fa(at) Fa(at) Fa(at)

= F(ai/clJrM) F(ai/C)F(ai/Cm) F(ai/02)F(ai/cm+1) F(ai/c)F(a:/chrl)

Fa(at) F4(at)

F* (ay
P P ey A e e ey I O T

F4(at) F4(at)

T @R @Y @ T @) (@) r (e ) (43)
+ F4(at) + F*(at) _ F5 (ax)
S S B G E N A O E

— F5(at) _ Fs(at)
w2 (o) e () (/) (o) e (el

_ F5(at) i F6(ay)
F2(a:/C)F(ai/cz)F(ai/CMH) F4(ai/c)F(ai/cmfl)




20

Since, as t | 0, we have

od 1/2
t/ ])(E;-Y)(t)) ,e<1/2
LY () e> 12,

1—F(ai/cj)~{

with slow varying function £{”(t) given in (A.7) (see Ferreira and Canto e Castro [10], 2008), if
we apply (A.6)-(A.7), after some calculations we obtain, as ¢ | 0,
P(Y72+m <ap < YVZ’;-{-muyl <ap < }/2) ~ t?

and also P(Y7 < a; < Y2) ~ t. Therefore, by definition in (21), we have for pARMAX case,
I/ﬁny) = 1/2 and LU(Y)(t) ~ 1.

Regarding the ARMAX process in (37), we have
P(Yler > at,Yl > Clt) ~ tCm/’Y,

ast | 0 (see details in Ferreira and Canto e Castro [10], 2008), and hence we have, A} = ¢™/7 (in
agreement with the fact that D’(u,) does not hold and 6 = 1 — ¢ /7), nY) =1 and LY (t) ~ ™/
for all m € N. A similar reasoning to that in (43) leads to

P()/2+m Sat<}/3+m7}/1 < a <}/2)

F2(at) N Fa(at) . F3(at) . F3(at)
F(at/ct*™)  F(at/c)F(at/c™)  F(at/c?)F(ar/cmFl)  F(at/c)F(at/c™T1)

_ F3(at) F*(as) F*(as) F*(ay)
Fla/@)Fla /o) ¥ P @/ F (@ /om0 T F2a /O F(ar/em) T Flai/oF(ar/) Flai/em)
F*(ay) F*(ay) I (ay) _ P (ay)
t P/ Fa /o) T PP P ) T P/ (e /et~ FPlai/oFar /o)

_ F3(ay) _ F®(ay) _ F?(a¢) + F(a¢)
F2(ay/c)F(ar/c?)F(as/c™—1) F3(a¢/c)F(a¢/c™) F2?(ay/c)F(ar/c?)F(as/cm—1) F*(a¢/c)F(at/c™—1)

Since we have, as t | 0,

1 — F(a;/c?) ~ 1= Fy(d tay) ~ =D/t
in the ARMAX case (Ferreira and Canto e Castro [10], 2008), after some calculations we derive

P(Yoqym < a; < Yaym, Y1 < a; < Y) ~ (1 —cY/7)2(1 = clm=1/7)2,
as well as,
P(Y1 <a; <Ya) ~(1—c'/Mt.

Therefore, according to (20) we have u(}) = 0 (agrees with the fact that D”(u,) holds; we have
then ¥ = 1), and by (21), v’ =1/2 and Lyg)(t) ~ (1 = elm=1/7),
5 Inference: some notes

The estimation of coefficient p can be made through the multivariate tail dependence coefficients
Ax;,v;|x.,vi given the relation stated in (7). Observe that they can be defined via the notion of
copula, introduced by Sklar [24] (1959). A copula C is a cumulative distribution function whose
margins are uniformly distributed on [0, 1], i.e., C(uy,...,uq) = P(F1(X1) < u1, ..., Fg(Xq) < uq),
where F1, ..., Fy are the continuous marginal d.f.’s of random vector (X7, ..., X4) and (u1,...,uq) €
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[0,1]¢. The copula is unique as long as the marginal d.f.’s are continuous, a requisite that we
assume. For instance, we have

A=tim2 - 12O gy losCluy)
ult l—u ull logu

Parametric estimation methods, based on either a specific distribution or family of distributions or
a specific copula or family of copulas, as well as nonparametric estimation procedures are already
known in literature. For a survey see Frahm et al. [13] (2005) and Schmidt and Stadtmiiller [23]
(2006). In the sequel we shall focus on nonparametric estimation.

Under conditions somewhat wide in this context, Schmidt and Stadtmiiller [23] (2006) prove
strong consistency and asymptotic normality of the general nonparametric estimator

n n
Azi\z: = Z 1{R573>n7k, VZGIUL}/ Z 1{R5le)>nfk, vIEL}
j=1 j=1

for the general coefficient Az, |z, , considering random vector Z = (Zi,...,Z;), where [ U L C

{1,....,d} (INnL=0), Rffl) denotes de rank of component ZZ(J), k=k(n) — oo and k/n — 0 as
n — oo. In our case, the most interesting situation is to consider the non-independent sequence,
(X1,X2,11,Y0), (X3,X4,Y5,Ys),..,(Xpn—1,Xn, Yn1,Y,). If we assume a regularity condition for
the joint tail of (X7, X3,Y7,Y2) and a uniform bound on the probability that both X; and X5,
or Y7 and Y3, belong to an extremal interval, similar to conditions (C2) and (C3) in Drees [9]
(2003), we still derive asymptotic normality with eventually modified variance (see Proposition 2.1
and Theorem 2.1 in Drees [9] 2003, and Theorem 6/10 in Schmidt and Stadtmiiller [23] 2006).
Therefore, by plugging in the respective tail dependence coefficient estimators in expression (7),
we derive estimator,

~

B ~ - - ~ ~ ~
p=(1- >‘X{2}|X{1}) Av|x = /\Y{2}|Y{1}>‘X{2}|Y{1,2} - >‘X{2}|X{1}>‘Y{2}\X{1,2}+

+/\Y|X/\X{2}7Y{2}|X{1}7Y{1} )

which is also strong consistent (straightforward from Theorem 11 Schmidt and Stadtmiiller [23]
2006) and asymptotic normal. One important practical problem arises in the optimal choice of the
parameter k which relates to the usual variance-bias problem. An algorithm to choose the optimal
threshold & can be seen in Schmidt and Stadtmiiller [23] (2006).

Other estimators arise from the relation between p and the upcrossings index ¥ which in turn
relates with the extremal index 6 by ¥ = £ 6 in (27). More precisely, under conditions A(u,) and

D® (u,), we have
M1 = 1-—9.

with g1 given in (20). Estimation of ¥ can be done through the extremal index 0, modified by
consistent estimates of the mean number of exceedances (1) and the mean number of upcrossings
(¢) of high levels. There are several estimators of the extremal index in literature. For a survey
see Ancona-Navarrete and Tawn [2].

Now we consider coefficient v introduced in (12). Given the relations stated with other param-
eters well-known and studied in the literature, we can also derive quite straightforward estimators
for v. More precisely, under conditions of Proposition 2.5, an estimator suggesting it-self is,

v= max(n, NX2y,Y11,23 0 X112, Y1210 1X (1,23, Y0 23 )7

Observe that coefficient nx, y, in (13) corresponds to the tail index of r.v. min(Xy,Y}) for which
many estimators with good properties have been established (hill, pickands, maximum-likelihood,
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moments, power weighted moments, are the most known). Other estimators have also been pro-
posed. For a survey see Coles et al. [5] (1999), Peng [21] (1999) and Draisma et al. [8] (2004).

In a future research, we intend to derive other estimators and respective asymptotic proper-
ties, as well as analyze and compare them with the above mentioned estimators through simulation.

A Appendix: ARMAX and pARMAX processes

We derive some useful properties about processes pARMAX in (36) and ARMAX in (37), both
with Pareto-type marginal d.f. F' given in (38). We denote left-end-point, x,, and right-end-point,
xp = +oo. Formulation (38) means also that 1 — F' is a regularly varying function at co of order
—1/~. Equivalently, we consider a regularly varying tail quantile function of order —-,

F7Y1—t)=tL,.(t), (A1)
with function L.-1 slowly varying at 0. Since,
F(F (1 =) ~ F(t Les (8) = 1= t[Lems ()] Lo (t77Les (1),
we have the following relation between L, and L -1:

[Loar ()] Lo (7 Lpen () ~ 1, £ ] 0. (A.2)

The stationarity equation of pARMAX in (36) is given by

F(x) = F(z'/°)F,(x).
whilst for ARMAX in (37) it is given by

F(x) = F(z/c)Fy(x),

Using the latest, we derive the respective m-step transition probability functions (t.p.f.) from x to
] — o0, y]: for pARMAX process we have,

Q" (] = 00,3]) 1= P(Xon SylX, = 2) = ity Ly, 1yeny.
and for ARMAX process it is given by,

Q" (2,] = 00,y]) = P(X,pn SylX, =2) = %1{%”@}7
where 1} denotes the indicator function.

In the following we derive multivariate d.f.’s within each process.

e for pARMAX recursion in (36), we have

PX;<y,X;<y) = ij*i(x ]— o0 ])F(dx)—& (A4)
l_yu J _y - o, 9 7y - F(yl/cjfi) .
Moreover, for the multivariate case,
P(Xil S Y, ..,Xik S y)
Fl(upF—1(u) k—1 . )
% / QZk b 1 :'Ezk 17] Oouy])HQZkij_lkij*l (l'ikfjadxik,jJrl)F(dl'il)
(A5)

F*y)
T
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Observe now that,
FF (1 =t)V) = F(t=/ (Lp-1(1))) = 1 = "/ L;(8), (A.6)
where

L;(t) = (Lp-a () L (677 (L1 (£) 77 (A7)

By (A.1)-(A.2), we have that

L,(t) is slow varying, as ¢ | 0. (A.8)
o for ARMAX recursion in (37), in a similar manner we derive,

R (A9

In the multivariate case we have

F*(y)

( 1 k ) H‘];Z:2F(y/c7,j—lj71)

and
F(F(1—1t)/¢) =F(t77 /L1 (t)) =1 —tc/7&,(t).
where, by (A.1)-(A.2), we have

£,(t) = (Lp—1(t)) " Lp(t 7 (Lp—1(t))/c’) ~1,ast | 0. (A.10)
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