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e.1 Introdu
tionMeasures to quantify the extremal dependen
e of a random pair (X, Y ) started to appear in liter-ature around the de
ade of 50. One natural measure is the so 
alled �tail dependen
e 
oe�
ient",
λ = lim

x→xF

P (Y > x|X > x)where xF is the upper limit of the support of the 
ommon marginal distribution F , provided thelimit exists. Loosely stated, λ is the probability of one variable being extreme given that theother is extreme. In the 
ase, λ = 0, the variables are said to be asymptoti
ally independentand if, 0 < λ ≤ 1, they are asymptoti
ally dependent. Observe that, the boundary 
ases oftotal dependen
e and total independen
e 
orresponds, respe
tively, to λ = 1 and λ ∼ P (Y > x).The importan
e of this 
lass was re
ognized as far ba
k as Ge�roy [14℄ (1958/59), Sibuya [22℄(1960), Tiago de Oliveira [25℄ (1962/63) and Mardia [20℄ (1964). Coe�
ient λ is generalized tothe 
ase of X and Y non-identi
ally distributed, with marginal d.f., respe
tively, FX and FY , bytransformation to Uniform margins, FX(X) and FY (Y ), and setting,
λ = lim

u↑1
P (FY (Y ) > u|FX(X) > u). (1)In order to graduate the �strength" of dependen
e in the 
ase of asymptoti
 tail independen
e(λ = 0), Ledford and Tawn [18, 19℄ (1996, 1997) have 
onsidered the following formulation thatstates the rate of 
onvergen
e towards zero:

P (X > x, Y > x) ∼ P (X > x)1/ηX,Y L⋆
ηX,Y

(1/P (X > x)), as x → xF (2)where L⋆
ηX,Y

is a slowly varying fun
tion at ∞, i.e., L⋆
ηX,Y

(tx)/L⋆
ηX,Y

(x) → 1 as x → ∞ for any�xed t > 0, and ηX,Y ∈ (0, 1] is the �Ledford and Tawn 
oe�
ient". The 
oe�
ient ηX,Y des
ribesthe type of limiting dependen
e between X and Y , and L(t) its relative strength given a parti
ularvalue of ηX,Y . Observe that equation (2) 
an also be expressed as
P (Y > x|X > x) ∼ P (X > x)1/ηX,Y −1L⋆

ηX,Y
(1/P (X > x)), as x → xFshowing how λ 
hanges with ηX,Y . Whenever ηX,Y = 1 and L⋆

ηX,Y
(x) → a as x → ∞ for some

0 < a ≤ 1, r.v.'s X and Y are asymptoti
ally dependent with total dependen
e o

urring if
a = 1. The random pair is asymptoti
ally independent when either ηX,Y < 1 or when ηX,Y = 1with L⋆

ηX,Y
(x) → 0 as x → ∞. The 
ase ηX,Y > 1/2 
orresponds to positive extremal dependen
e,
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ηX,Y < 1/2 to negative dependen
e and ηX,Y = 1/2 to (almost) independen
e (perfe
t independen
eif L⋆

ηX,Y
(x) = 1). We 
an also generalize to the 
ase of X and Y non-identi
ally distributed, withmarginal d.f., respe
tively, FX and FY , by transformation to Uniform margins. For 
onvenien
ewe take regular variation at point 0. More pre
isely,

P (FX(X) > 1 − t, FY (Y ) > 1 − t) ∼ t1/ηX,Y LηX,Y (t), as t ↓ 0 (3)where and LηX,Y (t) is a slowly varying fun
tion at 0.Observe that all these measures 
on
ern tail dependen
e based on extremal events of the type
{X1 > x} for large x, i.e. an ex
eedan
e of a high level x. Another extremal event of interest is theup
rossing of a high level x, {X1 ≤ x < X2}. In an analogous way, we will state tail dependen
emeasures based on these latter. These new 
oe�
ients are related with the multivariate taildependen
e 
oe�
ients de�ned in S
hmidt and Stadtmüller [23℄, 2006 or in Ferreira [12℄, 2008, aswell as, with a multivariate formulation of the 
oe�
ient of Ledford and Tawn (Se
tion 2).In Se
tion 3 we will see straight 
onne
tions between tail dependen
e 
oe�
ients and lo
aldependen
e 
onditions, D′ (Leadbetter et al. [16℄) and D′′ (Leadbetter and Nandagopalan [17℄),as well as, with the extremal index and the up
rossings index (Ferreira [11℄). Se
tion 4 is devotedto several examples illustrating the previous results, in
luding the well-known M4 pro
esses andExtended M4 pro
esses (EM4) (He�ernan et al. [15℄ 2007). We also look at the sequen
e oflevels persisting in time, whi
h was inspired by the modeling of tidal that persist for su

essivetime instants, under independent levels and under max-autoregressive dependen
e (Draisma [7℄;Ferreira and Canto e Castro [10℄). We end with some notes on estimation of the new 
oe�
ientsin Se
tion 5.2 Tail dependen
e through up
rossingsLet (X1, Y1) and (X2, Y2) be two random pairs identi
ally distributed as (X, Y ), whi
h has 
ommonmarginal d.f. F . As already mentioned, the usual tail dependen
e measures are based on theextremal events �ex
eedan
es" by ea
h margin. In an analogous way, we 
an state tail dependen
emeasures based on up
rossings. More pre
isely, similar to the tail dependen
e 
oe�
ient λ in (1),we 
onsider the up
rossings tail dependen
e 
oe�
ients,

µY |X = lim
x→xF

P (Y1 ≤ x < Y2|X1 ≤ x < X2)and
µX|Y = lim

x→xF

P (X1 ≤ x < X2|Y1 ≤ x < Y2).
(4)provided the limits exist.The boundary 
ases of total up
rossings dependen
e and total up
rossings independen
e be-tween events {Y1 ≤ x < Y2} and {X1 ≤ x < X2} 
orresponds to, respe
tively, µY |X = µX|Y = 1,and µY |X ∼ P (Y1 ≤ x < Y2) and µX|Y ∼ P (X1 ≤ x < X2).We 
an also state 
oe�
ients µY |X and µX|Y generalized to the 
ase of random pairs (Xj , Yj) (j =

1, 2) with marginal d.f., respe
tively, FX and FY . Considering, for instan
e, µY |X, by transformationto Uniform margins, FX(Xj) and FY (Yj), we have,
µY |X = lim

u↑1
P (FY (Y1) ≤ u < FY (Y2)|FX(X1) ≤ u < FX(X2)). (5)In order to distinguish 
oe�
ient λ from 
oe�
ients µY |X and µX|Y , 
on
erning the tail depen-den
e, we give the following de�nitions.De�nition 2.1 A random pair (X, Y ) is 
alled asymptoti
 ex
eedan
es-tail independent if λ = 0in (1) and ex
eedan
es-tail dependent otherwise.



3De�nition 2.2 Random pairs (X1, Y1) and (X2, Y2) are 
alled asymptoti
 up
rossings-tail inde-pendent if µY |X = 0 or µX|Y = 0 in (5) and up
rossings-tail dependent otherwise.Next we relate 
oe�
ients µY |X and µX|Y with the more general multivariate tail dependen
e
oe�
ient (S
hmidt and Stadtmüller [23℄, 2006; Ferreira [12℄, 2008),
λXI ,YJ |XL,YK

= lim
u↑1

P

( ⋂

i∈I,j∈J

{FX(Xi) > u, FY (Yj) > u}

∣∣∣∣
⋂

l∈L,k∈K

{FX(Xl) > u, FY (Yk) > u}

) (6)for non empty sets I, J, L, K ⊂ {1, ..., n}.Proposition 2.1 Coe�
ient µY |X given in (5) 
an be stated as
µY |X = (1 − λ(X))−1

[
λ − λ(Y ) λX{2}|Y{1,2}

− λ(X) λY{2}|X{1,2}
+ λ λX{2},Y{2}|X{1},Y{1}

]
, (7)where λ ≡ λY{2}|X{2}

= λY{1}|X{1}
, λ(X) ≡ λX{2}|X{1}

and λ(Y ) ≡ λY{2}|Y{1}
, provided the existen
eof these limits and λ(X) 6= 1.Proof. Observe that,

P (FY (Y1) ≤ u < FY (Y2), FX(X1) ≤ u < FX(X2))

= P (FX(X2) > u, FY (Y2) > u)

−P (FX(X2) > u, FY (Y2) > u, FY (Y1) > u)

−P (FX(X2) > u, FY (Y2) > u, FX(X1) > u)

+P (FX(X2) > u, FY (Y2) > u, FY (Y1) > u, FX(X1) > u)

= P (FY (Y2) > u|FX(X2) > u)P (FX(X2) > u)

−P (FX(X2) > u|FY (Y2) > u, FY (Y1) > u)P (FY (Y2) > u|FY (Y1) > u)P (FY (Y1) > u)

−P (FY (Y2) > u|FX(X2) > u, FX(X1) > u)P (FX(X2) > u|FX(X1) > u)P (FX(X1) > u)

+P (FY (Y2) > u, FX(X2) > u|FX(X1) > u, FY (Y1) > u)·

·P (FY (Y1) > u|FX(X1) > u)P (FX(X1) > u)

(8)
and that
P (FX(X1) ≤ u < FX(X2))=P (FX(X2) > u) − P (FX(X2) > u, FX(X1) > u)

=P (FX(X2) > u) − P (FX(X2) > u|FX(X1) > u)P (FX(X1) > u)

∼ (1 − u)
[
1 − P (FX(X2) > u|FX(X1) > u)

]
(9)as u ↑ 1. Hen
e applying (6) we have (7). �Corollary 2.2 Under the 
onditions of Proposition 2.1, if λ(X) 6= 1 and λ(Y ) 6= 1, then

(1 − λ(X))µY |X = (1 − λ(Y ))µX|Y .



4 Proposition 2.1 states a very interesting feature about µY |X (respe
tively, µX|Y by Corollary2.2), as this 
oe�
ient 
ongregates both �temporal" and �spatial" dependen
e. We have temporaldependen
e measured by λ(X) and λ(Y ) for time series {Xi} and {Yi}, and �spatial" dependen
emeasured by λY{i}|X{i}
for ve
tors (Xi, Yi). Moreover it also in
ludes the e�e
t of temporal depen-den
e in a given �lo
ation" into another by 
oe�
ients λX{i}|Y{i,i−1}

and λY{i}|X{i,i−1}
, as well as,the e�e
t of �lo
ation" dependen
e in time by 
oe�
ient λX{2},Y{2}|X{1},Y{1}

.Remark 2.3 Events ⋂
ı∈I{FX(Xı) > u} in (6) 
an be repla
ed by minı∈I{FX(Xı) > u}. Hen
e themultivariate tail dependen
e 
oe�
ient λXI ,YJ |XL,YK

is a
tually a bivariate one, as the originallyde�ned λ stated in (1), for random pairs (
min

i∈I,j∈J
{FX(Xi), FY (Yj)}, min

l∈L,k∈K
{FX(Xl), FY (Yk)}

).Obviously, the dependen
e between 
onse
utive random pairs (X1, Y1) and (X2, Y2) plays arole. Observe that, if they are (asymptoti
) independent (λ(Y ) = λ(Y ) = 0) then µX|Y = µY |X =
λ ≡ λY2|X2

≡ λY1|X1
, whi
h makes sense be
ause dependen
e only exists within ea
h random pair.By a similar pro
edure of Ledford and Tawn [18, 19℄ (1996, 1997), we 
onsider a formulationstating the 
onvergen
e rate of P (Y1 ≤ x < Y2, X1 ≤ x < X2) to 0, as x → xF , in order to graduatethe �strength" of dependen
e within asymptoti
 up
rossings independen
e. More pre
isely,

P (X1 ≤ x < X2, Y1 ≤ x < Y2) ∼ P (X1 ≤ x < X2)
1/νY |X L⋆

νY |X
(1/P (X1 ≤ x < X2)), (10)as x → xF , where L⋆

νY |X
is a slowly varying fun
tion at∞, and the same 
on
lusions for ex
eedan
es
on
erning the Ledford and Tawn 
oe�
ient ηX,Y , are derived. The 
oe�
ient νY |X des
ribes thetype of limiting dependen
e between up
rossings of Xi's and Yi's, and L⋆

νY |X
(x) its relative strengthgiven a parti
ular value of νY |X. Expressing equation (10) as

P (Y1 ≤ x < Y2|X1 ≤ x < X2) ∼ P (X1 ≤ x < X2)
1/νY |X−1L⋆

νY |X
(1/P (X1 ≤ x < X2)),we 
an also see how µY |X 
hanges with νY |X. When νY |X = 1 and L⋆

νY |X
(x) 6→ 0 as x → ∞ wehave asymptoti
 dependen
e of the up
rossings (total dependen
e if L⋆

νY |X
(x) = 1), and asymptoti
independen
e otherwise. The 
ases νY |X > 1/2 and νY |X < 1/2 
orrespond to, respe
tively, positiveand negative dependen
e, and νY |X = 1/2 an (almost) independen
e (perfe
t if L⋆

νY |X
(x) = 1).Similarly, we 
an also generalize to the 
ase of X and Y non-identi
ally distributed, by 
onsidering

P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2))

∼ P (FX(X1) ≤ 1 − t < FX(X2))
1/νY |X LνY |X

(t),
(11)as t ↓ 0, where fun
tion LνY |X

(t) is slowly varying at 0.Remark 2.4 Observe that, under 
onditions of Corollary 2.2, in the 
ase of up
rossings-tail depen-den
e, µY |X and µX|Y might di�er (see Example 4.2) and within asymptoti
 up
rossings extremalindependen
e, µY |X = µX|Y = 0. If we assume the 
ondition (2) of Ledford and Tawn for therandom pairs (X1, X2) and (Y1, Y2), the strength of dependen
e measured by 
oe�
ient νY |X andrespe
tive slow varying fun
tion, stated in (11), will only 
hange on this latter one. It is easy tosee if we rewritten expression in (11) as
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2)) ∼ t1/νLν(t), as t ↓ 0,where in the last step we have applied (9) and (3), with slowly varying fun
tion Lν(t) = (1 −

t1/ηX1,X2−1LηX1,X2
(t))1/νY |X LνY |X

(t) or Lν(t) = (1 − t1/ηY1,Y2−1LηY1,Y2
(t))1/νX|Y LνX|Y

(t) and ν =
νY |X = νX|Y . Therefore, the 
on
lusion about up
rossings tail dependen
e or independen
e between
{FX(X1) ≤ u < FX(X2)} and {FY (Y1) ≤ u < FY (Y2)} do not 
hange, only the strength of



5dependen
e within the dependen
e 
ase or independen
e 
ase might di�er. Therefore, from now onwe 
onsider (11) with νY |X repla
ed by ν, i.e.,
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2))

∼ P (FX(X1) ≤ 1 − t < FX(X2))
1/νLν(t),

(12)with Lν(t) ≡ LνY |X
(t).Now we formulate a su�
ient 
ondition for (12) throughout the η's 
oe�
ients. By de�nition(3), 1/η is the regularly varying index of r.v. min(X, Y ). Hen
e, the following extension for sets

I, J ⊂ {1, ..., n},
P

(
min

i∈I,j∈J
(FX(Xi), FY (Yj)) > 1 − t

)
∼
t↓0

t1/ηXI ,YJ LXI ,YJ (t), (13)where LXI ,YJ (t) is a slowly varying fun
tion at 0, leads us to the 
oe�
ient ηXI ,YJ .Proposition 2.5 Assume that (13) holds for any I, J ⊂ {1, 2}. Let
η = max{ηX,Y , ηX{2},Y{1,2}

, ηX{1,2},Y{1,2}
, ηX{1,2},Y{1,2}

},where ηX,Y stands for ηX{2},Y{2}
= ηX{1},Y{1}

, and Lη is the 
orresponding slowly varying fun
tionin (13).(i) If η = ηX,Y , then (12) holds with ν = ηX,Y , provided the left-hand side of (12) is non null;(ii) If η 6= ηX,Y , then the left-hand side of (12) is null.Proof. First observe that if I ′ ⊂ I and J ′ ⊂ J then
t
1/ηX

I′
,Y

J′ LXI′ ,YJ′ (t) ≥ t1/ηXI ,YJ LXI ,YJ (t).On the other hand, from (8), (12) and (13), we have
P (FX(X1) ≤ 1 − t < FX(X2), FY (Y1) ≤ 1 − t < FY (Y2)) (14)

∼ t1/ηLη(t)
[
t1/ηX,Y −1/ηLX,Y (t)L−1

η (t) − t
1/ηX{2},Y{1,2}

−1/η
LX{2},Y{1,2}

(t)Lη(t)−1

−t
1/ηX{1,2},Y{2}

−1/η
LX{1,2},Y{2}

(t)Lη(t)−1 + t
1/ηX{1,2},Y{1,2}

−1/η
LX{1,2},Y{1,2}

(t)Lη(t)−1
]

= t1/ηLη(t)
[
a1(t) − a2(t) − a3(t) + a4(t)

] (15)where ai(t) (i = 1, ..., 4) denotes the absolute value of the ith term in the produ
t of the right-handside and satisfy the following properties:(1) a1(t) ≥ max{a2(t), a3(t)} ≥ min{a2(t), a3(t)} ≥ a4(t) > 0;(2) a1(t) = 1 or a1(t) → 0, as t → 0;(3) a1(t) − a2(t) − a3(t) + a4(t) ≥ 0.Now we look at all the possibilities for η.If η = ηX,Y , then (15) be
omes
t1/ηLη(t)

[
1 − a2(t) − a3(t) + a4(t)

]
∼ t1/ηLη(t), as t → 0,



6provided 1 − a2(t) − a3(t) + a4(t) is non null.If η = ηX{2},Y{1,2}
, then (15) is equal to

t1/ηLη(t)
[
a1(t) − 1 − a3(t) + a4(t)

]
.By 
onditions (1) and (2) above, we have a1(t) = 1, and by (1) and (3) we have a3(t) ≥ a4(t) and

−a3(t) + a4(t) ≥ 0. Therefore, a3(t) = a4(t), and hen
e probability in (14) is null.If η = ηX{1,2},Y{2}
, then (15) is

t1/ηLη(t)
[
a1(t) − a2(t) − 1 + a4(t)

]
,and 
onditions (1) and (2) lead to a1(t) = 1, and by (1) and (3) we have a2(t) = a4(t). Hen
eprobability in (14) is null.If η = ηX{1,2},Y{1,2}

, then (15) is equal to
t1/ηLη(t)

[
a1(t) − a2(t) − a3(t) + 1

]
,where, by (1) and (2), a1(t) = 1 = a2(t) = a3(t). Therefore, we also have (14) null. �Observe that, in a similar manner, we extend the up
rossings tail dependen
e 
oe�
ient µY |X,de�ned in (5), to the multivariate up
rossings tail dependen
e 
oe�
ient. More pre
isely, for sets

I, J, L, K ⊂ {1, ..., n},
µXI ,YJ |XL,YK

= lim
u↑1

P

( ⋂

i∈I,j∈J

{FX(Xi) ≤ u < FX(Xi+1), FY (Yj) ≤ u < FY (Yj+1)}

∣∣∣∣

⋂

l∈L,k∈K

{FX(Xl) ≤ u < FX(Xl+1), FY (Yk) ≤ u < FY (Yk+1)}

) (16)
Dependen
e also o

urs when a single pro
ess is studied in terms of its temporal evolution.More pre
isely, for a stationary pro
ess {Xi}, we 
an state the above mentioned tail dependen
emeasures for random pairs (X1, X1+m), i.e. observations separated in time by a lag m (m ∈

N). Hen
e, and 
onsidering marginal uniform normalization, we have the lag-m tail dependen
e
oe�
ient,
λm = lim

u↑1
P (F (X1+m) > u|F (X1) > u), (17)as well as the lag-m Ledford and Tawn 
oe�
ient, ηm, su
h that

P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ t1/ηmLm(t), as t ↓ 0 (18)or, equivalently,
P (X1+m > F−1(1 − t)|X1 > F−1(1 − t)) ∼ t1/ηm−1Lm(t), as t ↓ 0 (19)where F is the marginal d.f. of pro
ess {Xi} and Lm(t) is a slowly varying fun
tion at 0.Similarly, we state the lag-m up
rossings tail dependen
e 
oe�
ient

µm = lim
u↑1

P (F (X2+m) ≤ u < F (X3+m)|F (X1) ≤ u < F (X2)), (20)and also, as t ↓ 0,
P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m)

∼ P (X1 ≤ F−1(1 − t) < X2)
1/νmLνm(t),

(21)



7or, equivalently,
P (X2+m ≤ F−1(1 − t) < X3+m|X1 ≤ F−1(1 − t) < X2)

∼ P (X1 ≤ F−1(1 − t) < X2)
1/ηm−1Lνm(t),

(22)with fun
tion Lνm(t) slowly varying at 0.Corollary 2.6 For the lag-m up
rossings tail dependen
e 
oe�
ient in (20), we have
µm ∼

(
1 − λ1

)−1
[
λm+1 − λmλ{3+m|2,2+m} − λ1λ{3+m|1,2} + λ1λ{2+m,3+m|1,2}

]
, (23)where we take λXI,J |XL,K

= λI,J|L,K sin
e there is no ambiguity, provided the existen
e of theselimits and λ1 6= 1.As stated in Proposition 2.5, the 
oe�
ient νm relates with Ledford and Tawn 
oe�
ientsthroughout:
P (X1 ≤ F−1(1 − t) < X2)

1/νmLνm(t)∼ t1/ηm+1Lm+1(t) − t1/η{2,2+m,3+m}L{2,2+m,3+m}(t)

−t1/η{1,2,3+m}L{1,2,3+m}(t)+ t1/η{1,2,2+m,3+m}L{1,2,2+m,3+m}(t).
(24)Remark 2.7 In applying the multivariate tail dependen
e 
oe�
ient (6) to 
onse
utive r.v.'s of asequen
e {Xi}, we are a
tually 
omputing a bivariate tail dependen
e 
oe�
ient (see Remark 2.3) ofa random pair of levels persisting in a �xed period of time, (

min{X1, ..., Xr}, min{Xr+m, ..., Xs}
)that will be studied in Se
tion 4.2.3 Extremal Index and Up
rossings IndexFor a stationary sequen
e {Xi}, some lo
al dependen
e 
onditions 
on
erning extremal events havebeen 
onsidered leading to short-range dependen
e measures, e.g., the extremal index θ (Leadbetteret al. [16℄, 1983) and the up
rossings index η (Ferreira [11℄, 2006), related with the presen
e of
lustering of, respe
tively, ex
eedan
es and up
rossings of high levels un.De�nition 3.1 Condition ∆(un) will be said to hold for {Xi} if αn,ln →

n→∞
0 for some sequen
e

ln = o(n), where
α(n, l) = sup

1≤k≤n−l
{|P (A ∩ B) − P (A)P (B)| : A ∈ Bk

1 (un), B ∈ Bn
k+l(un)},and Bj

i (un) denotes the σ-�eld generated by {Xi, ..., Xj}.Condition D(un) will hold if we are under the same assumptions of 
ondition ∆(un) above, butrestri
ted to the events {Xs ≤ un}, i ≤ s ≤ j.The lo
al dependen
e 
ondition D′(un) 
onsidered in Leadbetter et al. [16℄ bounds the proba-bility of more than one ex
eedan
e of un, on a time-interval of rn = [n/kn] integers with kn → ∞,as n → ∞.De�nition 3.2 Condition D′(un) will be said to hold for {Xi} if for some sequen
e {kn} su
hthat kn →
n→∞

∞, we have
lim sup

n→∞
n

rn∑

j=2

P
(
X1 > un, Xj > un

)
= 0.



8 Under 
ondition D′(un), the ex
eedan
es of levels un tend to 
ome out isolated, similar toan i.i.d. behavior, leading to unit extremal index. If 
ondition D′(un) doesn't hold, then theex
eedan
es of un tend to 
luster. For su
h sequen
es, Leadbetter e Nandagopalan [17℄ statedanother lo
al dependen
e 
ondition, D′′(un), weaker than D′(un) (under D′′(un) all values 0 ≤
θ ≤ 1 are possible), that inhibits rapid os
illations near high levels and hen
e restri
ts the lo
alo

urren
e of up
rossings {Xj ≤ un < Xj+1}.De�nition 3.3 Condition D′′(un) will be said to hold for {Xi} if 
ondition D(un) also holds and
(kn)n is su
h that

kn −→
n→∞

∞ , knαn,ln −→
n→∞

0 , knln/n −→
n→∞

0 , (25)
kn(1 − F (un)) −→

n→∞
0 and
lim sup

n→∞
n

rn−1∑

j=2

P
(
X1 > un, Xj ≤ un < Xj+1

)
= 0.Condition D′′(un) 
an be slightly weakened by repla
ing �X1 > un" by �X1 ≤ un < X2" as we 
ansee in the proof of Proposition 4.3.5 of Leadbetter and Nandagopalan [17℄.For stationary normal sequen
es, if the 
ovarian
es between Xi and Xj, ρ|i−j|, satisfy theBerman's 
ondition ∑∞

n=0 ρ2
n < ∞, then D(un) and D′(un) hold for appropriate sequen
es {un}.We shall present in the next result a su�
ient 
ondition for D′(un) and D′′(un) throughout theabove dependen
e 
oe�
ients {λn} and {µn}.Proposition 3.1 Let {Xi} be a stationary sequen
e.1. If nP (X1 > un) → τ ≥ 0 then D′(un) holds if and only if ∑rn

j=2 λj−1(un) →
n→∞

0 for anysequen
e {rn = [n/kn]} with {kn} satisfying (25), where λj(un) = P (X1+j > un|X1 > un),
j ≥ 1.2. If nP (X1 ≤ un < X2) → ς ≥ 0 then D′′(un) holds if and only if ∑rn−1

j=2 µj−1(un) →
n→∞

0for any sequen
e {rn = [n/kn]} with {kn} satisfying (25), where µj(un) = P (X2+j ≤ un <
X3+j|X1 ≤ 1 < un < X2), j ≥ 1.Proof. Observe that 
ondition D′(un) is given by

lim sup
n→∞

nP (X1 > un)

rn∑

j=2

λj−1(un) = 0,and 
ondition D′′(un) be
omes
lim sup

n→∞
nP (X1 ≤ un < X2)

rn−1∑

j=2

µj−1(un) = 0. �We remark that if 
ondition D′(un) holds for un ≡ u
(τ)
n satisfying nP (X1 > u

(τ)
n ) → τ , then we�nd λi = 0, i ≥ 1, provided the existen
e of these 
oe�
ients. Analogously, from the statementin 2., if D′′(un) holds for un ≡ u

(ς)
n satisfying nP (X1 ≤ u

(ς)
n < X2) → ς, then if the 
oe�
ients µi(i ≥ 1) exist they must be null.Consider notation Mi,j = max{Xi, ..., Xj} for i ≤ j and Mi,j = −∞ for i > j.De�nition 3.4 Condition D(k)(un) holds for {Xi} when for some kn as in (25),

nP
(
X1 > un ≥ M2,k, Mk+1,rn > un

)
→

n→∞
0.



9The family of 
onditions D(k)(un), for k ≥ 1, 
onsidered in Cherni
k et al. [6℄ (1991) aresu�
ient to derive
θ = lim

n→∞
P (M2,k ≤ u(τ)

n |X1 > u(τ)
n )when the limit exists, where levels u

(τ)
n satisfy nP (X1 > u

(τ)
n ) → τ , as n → ∞. Under D′(un(τ))≡D(1)(u(τ)

n ) we have θ = 1, and D(2)(u(τ)
n ) leads to ς = θτ , where ς = limn→∞ nP (X1 ≤ un < X2).We now relate θ with the multivariate tail dependen
e 
oe�
ients.Proposition 3.2 If the stationary sequen
e {Xi} satis�es D(k)(u(τ)

n ), then the extremal index isgiven by
θ = 1 −

∑

2≤i≤k

λ{i|1} +
∑

2≤i<j≤k

λ{i,j|1} + ... + (−1)k+1λ{2,...,k|1}, (26)where λ{i|1} ≡ λi−1 given in (17), provided these limits exist.Proof. Just observe that, as n → ∞,
θ ∼ 1 −

∑

2≤i≤k

P (Xi > u(τ)
n |X1 > u(τ)

n ) +
∑

2≤i<j≤k

P (Xi > u(τ)
n , Xj > u(τ)

n |X1 > u(τ)
n )

+... + (−1)k+1P (X2 > u
(τ)
n , ..., Xk > u

(τ)
n |X1 > u

(τ)
n ). �A

ording to the remark after Proposition 3.1, we will �nd θ = 1 under D′(u(τ)

n ), sin
e we have
0 ≤ λi1,...,ip|1 ≤ λi1|1 ≡ λi1−1 = 0, for any integers 1 < i1 < ... < ip.Repla
ing ex
eedan
es with up
rossings in the 
ondition D(k)(un) a generalization of 
onditionD′′(un) takes pla
e. This new family of lo
al 
onditions, slightly stronger than D(k)(un), is de�nedbelow (
f. Ferreira [11℄).Consider notation Ñn(B) =

∑n
i=1 1{Xi≤un<Xi+1}δi/n(B), B ⊂ [0, 1], and Ñn[i/n, j/n] ≡ Ñi,jDe�nition 3.5 For any k ≥ 2, {Xi} satis�es 
ondition D̃(k)(un) if 
ondition ∆(un) holds and

nP
(
X1 ≤ un < X2, Ñ3,k = 0, Ñk+1,rn > 0

)
→

n→∞
0,for some sequen
e rn = [n/kn] with {kn} satisfying (25).We now de�ne the up
rossings index, ϑ, whi
h, as already mentioned, 
an be viewed as ameasure of 
lustering of up
rossings of high levels un by the r.v.'s in {Xi}.De�nition 3.6 If for ea
h ς > 0 there exits {ũ

(ς)
n } su
h that nP (X1 ≤ u

(ς)
n < X2) → ς and

P (Ñn(ũ
(ς)
n ) = 0) → exp(−ϑς), for some 
onstant 0 ≤ ϑ ≤ 1, then we say that the sequen
e {Xi}has up
rossings index ϑ.Hen
e, under 
onditions ∆(un) and D̃(k)(u(ς

n ) for some k ≥ 2 and for ea
h ς > 0, then theup
rossings index of {Xi} exists and is equal to ϑ if and only if
P (Ñ3,k(ũ(ς)

n ) = 0|X1 ≤ ũ(ς)
n < X2) →

n→∞
ϑ,for ea
h ς > 0 (Corollary 3.1 in Ferreira [11℄). We also have the following relation between theup
rossings index and the extremal index:

θ =
ς

τ
ϑ (27)A relation between µ and the multivariate tail up
rossings 
oe�
ients de�ned in (16) 
an alsobe stated.



10Proposition 3.3 If the stationary sequen
e {Xi} satis�es D̃(k)(u(ς)
n ), we have,

ϑ = 1 −
∑

3≤i≤k

µ{i|1} +
∑

3≤i<j≤k

µ{i,j|1} + ... + (−1)k+1µ{2,...,k|1}, (28)where µ{i|1} ≡ µi−2 given in (20), provided the existen
e of these limits.Proof. Straightforward by 
onsidering,
ϑ ∼ 1 −

∑

3≤i≤k

P (Xi ≤ u(τ)
n < Xi+1|X1 ≤ u(τ)

n < X2)

+
∑

3≤i<j≤k P (Xi ≤ u
(τ)
n < Xi+1, Xj ≤ u

(τ)
n < Xj+1|X1 ≤ u

(τ)
n < X2)

+... + (−1)kP (X3 ≤ u
(τ)
n < X4, ..., Xk ≤ u

(τ)
n < Xk+1|X1 ≤ u

(τ)
n < X2),as n → ∞. �Under 
ondition D̃(2)(u(ς)

n ) we will �nd ϑ = 1 as a 
onsequen
e of Proposition 3.1.4 ExamplesIn this se
tion, we illustrate the statements above with some examples.Example 4.1 Let {Yn}n≥−2 be an i.i.d. sequen
e of standard uniform distributed r.v.'s. Con-sider {Xn}n≥1 su
h that Xn = max(Yn, Yn−2, Yn−3). This sequen
e has θ = 1/3, ϑ = 1/2and satis�es 
onditions ∆(un) (it is 4-dependent), D(3)(un) and D̃(3)(un) for levels un su
h that
nP (X1 > un) →

n→∞
τ > 0 (Ferreira [11℄).We 
ompute the tail dependen
e 
oe�
ients, λm and ηm, given in (17) and (18), respe
tively.Observe that,

P (X1 > u, X1+m > u) = 1 − P (X1 ≤ u) − P (X1+m ≤ u) + P (X1 ≤ u, X1+m ≤ u)

= 1 − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1+m ≤ u, Ym−1 ≤ u, Ym−2 ≤ u)+

P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y1+m ≤ u, Ym−1 ≤ u, Ym−2 ≤ u)

= 1 − 2u3 + u5
1{m≤3} + u6

1{m>3},and hen
e,
P (X1 > u, X1+m > u)

P (X1 > u)
= 1−2u3+u5

1−u3 1{m≤3} + (1 − u3)1{m>3}

= 1−2u3+u5

1−u3 1{m≤3} + P (X1 > u)1{m>3},leading to λm = (1/3)1{m≤3} + 01{m>3} (observe that θ = 1− λ1 − λ2 and D′(un) does not hold).Taking u = 1 − t, we obtain, for m ≤ 3,
P (X1 > 1 − t, X1+m > 1 − t)

P (X1 > 1 − t)
∼ 1, t ↓ 0.Therefore, by (19) ηm = 1 · 1{m≤3} + (1/2) · 1{m>3} and Lm(t) = 1.



11Now we 
ompute the tail up
rossings 
oe�
ients, µm and νm, given in (20) and (21), respe
-tively. Observe that,
P (X1 ≤ u < X2) = P (X1 ≤ u) − P (X1 ≤ u, X2 ≤ u)

= P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u)

= u3 − u5 = u3(1 − u2)and that,
P (X1 ≤ u < X2, X2+m ≤ u < X3+m)

= P (X1 ≤ u, X2+m ≤ u) − P (X1 ≤ u, X2+m ≤ u, X2 ≤ u)

−P (X1 ≤ u, X2+m ≤ u, X3+m ≤ u) + P (X1 ≤ u, X2+m ≤ u, X2 ≤ u, X3+m ≤ u)

= P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u)

−P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u)

−P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y3+m ≤ u, Y1+m ≤ u, Ym−1 ≤ u)

+P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2+m ≤ u, Ym ≤ u, Ym−1 ≤ u, Y2 ≤ u, Y0 ≤ u, Y−1 ≤ u

, Y3+m ≤ u, Y1+m ≤ u, Ym−1 ≤ u)
= u6(1 − u2)2provided m > 3. If m = 1, we have,

P (X1 ≤ u < X2, X3 ≤ u < X4) = u5(1 − u)if m = 2, then
P (X1 ≤ u < X2, X4 ≤ u < X5) = u5(1 − u − u2 + u3)and m = 3,
P (X1 ≤ u < X2, X5 ≤ u < X6) = u6(1 − u − u2 + u3)Hen
e, by (20), we obtain µ1 = 1/2 and µm = 0 for m > 1 (observe now that ϑ = 1 − µ1 andD′′(un) does not hold too). Repla
ing u by 1− t in the above expressions, we have su

essively, as

t ↓ 0,
P (X1 ≤ 1 − t < X2, X2+m ≤ 1 − t < X3+m)

P (X1 ≤ 1 − t < X2)
∼ (1 − t)3(1 − (1 − t)2) ∼ 2tprovided m > 3, whereas for m = 1,

P (X1 ≤ 1 − t < X2, X3 ≤ 1 − t < X4)

P (X1 ≤ 1 − t < X2)
∼ 1

2−t − tfor m = 2,
P (X1 ≤ 1 − t < X2, X4 ≤ 1 − t < X5)

P (X1 ≤ 1 − t < X2)
∼ t(1 − t)2 ∼ tand m = 3,

P (X1 ≤ 1 − t < X2, X5 ≤ 1 − t < X6)

P (X1 ≤ 1 − t < X2)
∼ t(1 − t)3 ∼ t



12Therefore, from (22) we derive ν1 = 1 and Lν1(t) = 1
2−t − t 
orresponding to tail up
rossingsdependen
e, and for m > 1, νm = 1/2 and Lνm(t) = 1, i.e., an almost total independen
e.Example 4.2 Let {Yn}n≥−2 be an i.i.d. sequen
e of standard uniform distributed r.v.'s. Consider

{(Xn,1, Xn,2}n≥1 su
h that Xn,1 = max(Yn, Yn−2, Yn−3) and Xn,2 = Yn+1, n ≥ 1. We have,
P (X1,2 ≤ u < X2,2) = P (Y2 ≤ u < Y3) = u(1 − u),as well as,

P (X1,1 ≤ u < X2,1)=P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u) − P (Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y2 ≤ u, Y0 ≤ u)

=u3 − u5 = u3(1 − u2),and also,
P (X1,2 ≤ u < X2,2, X1,1 ≤ u < X2,1)

= P (Y2 ≤ u < Y3, max(Y1, Y−1, Y−2) ≤ u < max(Y2, Y0, Y−1))

= P (Y2 ≤ u < Y3, Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u, Y0 ≤ u)

= u4(1 − u)2

(29)Hen
e,
µ = lim

u↑1
P (X1,2 ≤ u < X2,2|X1,1 ≤ u < X2,1) = 0 = lim

u↑1
P (X1,1 ≤ u < X2,1|X1,2 ≤ u < X2,2).Observe now that,

P (X1,2≤1−t<X2,2,X1,1≤1−t<X2,1)
P (X1,2≤1−t<X2,2) ∼ P (X1,2 ≤ 1 − t < X2,2)(1 − t)2, as t ↓ 0,leading to ν = 1/2 with Lν(t) = (1 − t)2, and that

P (X1,2≤1−t<X2,2,X1,1≤1−t<X2,1)
P (X1,1≤1−t<X2,1) ∼ t(1−t)

2−t = t(1 − 1
2−t ), as t ↓ 0,hen
e ν = 1/2 with Lν(t) = 1 − 1

2−t .Now 
onsider sequen
e {(Xn,1, Xn,2}n≥1 su
h that Xn,1 = max(Yn, Yn−2, Yn−3) and Xn,2 = Yn,
n ≥ 1. Only the joint probability in (29) 
hanges, be
oming
P (X1,2 ≤ u < X2,2, X1,1 ≤ u < X2,1)=P (Y2 ≤ u < Y3, max(Y1, Y−1, Y−2) ≤ u < max(Y2, Y0, Y−1))

=P (Y2 ≤ u < Y3, Y1 ≤ u, Y−1 ≤ u, Y−2 ≤ u)

=u3(1 − u).Therefore we have up
rossings-tail dependen
e, sin
e,
lim
u↑1

P (X1,2 ≤ u < X2,2|X1,1 ≤ u < X2,1) = 1/2 and lim
u↑1

P (X1,1 ≤ u < X2,1|X1,2 ≤ u < X2,2) = 1,the last one 
orresponding to perfe
t dependen
e.



134.1 M4 pro
essesSmith and Weissman (1996) extend Deheuvels' de�nition to the so 
alled multivariate maxima ofmoving maxima (hen
eforth M4) pro
ess:
Yi,d = max

l
max

k
al,k,dZl,i−k, d = 1, ..., D,−∞ < i < ∞,for nonnegative 
onstants {al,k,d, l ≥ 1,−∞ < k < ∞} satisfying ∑∞

l=1

∑∞
k=−∞ al,k,d = 1 for

d = 1, ..., D, and {Zl,k, l ≥ 1,−∞ < k < ∞} being an array of independent unit Fré
het randomvariables whi
h have distribution form F (x) = exp(−1/z), z > 0. These are very �exible for tempo-rally dependent multivariate extreme value models. The tail dependen
e 
on
erning ex
eedan
es,i.e., tail dependen
e 
oe�
ients
λ

dd′
r

= lim
x→∞

P (Y1+r,d′ > x|Y1,d)and analogous extended versions, η
dd′

r
, of Ledford and Tawn 
oe�
ient, η, have been derived inHe�ernan et al. [15℄ (2007). More pre
isely,

P (Y1,d < x, Y1+r,d′ < x) = exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}and, as x → ∞,
exp

{ ∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}
∼ 1 −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1and
λ

(M4)
dd′

r
= 2 −

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′) and η

(M4)
dd′

r
= 1.Hen
e, for su�
iently large x,

P (Yr+1,d′ ≤ x < Yr+2,d′, Y1,d ≤ x < Y2,d)

=P (Yr+1,d′ ≤ x, Y1,d ≤ x) − P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x)

−P (Yr+1,d′ ≤ x, Y1,d ≤ x, Yr+2,d′ ≤ x) + P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x, Yr+2,d′ ≤ x)

=exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}

−exp

{
−

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′ , al,k+1,d)x

−1

}

−exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

}

+exp

{
−

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

}

∼
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d)x
−1+

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

−
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1−
∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

=Ax−1,

(30)



14and also
P (Y1,d ≤ x < Y2,d) = P (Y1,d ≤ x) − P (Y1,d ≤ x, Y2,d ≤ x)

∼
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 −
∞∑

l=1

∞∑

k=−∞

al,k,dx
−1

=
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 − x−1

= B x−1,

(31)
whi
h is non null if al,k,d is non de
reasing as a fun
tion of k (otherwise up
rossing events, {Yi,d ≤
x < Yi+1,d}, would be impossible). Therefore, under this assumption, by (30) and (31), we obtain,

µ(M4)
dd′

r

= P (Yr+1,d′ ≤ x < Yr+2,d′|Y1,d ≤ x < Y2,d) ∼
A
B
orresponding to up
rossings-tail dependen
e. Hen
e, ν(M4)

dd′
r

= 1 with slowly varying fun
tion
L

ν
(M4)

dd′
r

≡ A/B.Sin
e all variables in model M4 are asymptoti
ally dependent, He�ernan et al. [15℄ (2007)propose an extension in order to in
lude also asymptoti
al independen
e. More pre
isely, theypresent
Yi,d = max

(
U

1/α
i,d , max

l
max

k
al,k,dZl,i−k

)
, d = 1, ..., D,−∞ < i < ∞, (32)where α > 0 and {Ui,d,−∞ < i < ∞, d = 1, ..., D} are an array of positive independent r.v.'s andindependent of Zl,i. As before we 
onsider unit Fré
het marginals.Observe that we now have,

P (Yi,d < x) = exp{−x−α − x−1}as well as,
P (Y1,d < x, Y1+r,d′ < x) = exp

{
− 2x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}
.In this 
ase, we have,

λ
(EM4)
dd′

r
=

{
0 , α < 1

λ
(M4)
dd′

r
, α ≥ 1

and η
(EM4)
dd′

r
=

{
max(1/2, α) , α < 1
1 , α ≥ 1

(33)See He�ernan et al. [15℄ (2007) for details.



15Similarly to (30) and (31) we derive su

essively,
P (Yr+1,d′ ≤ x < Yr+2,d′ , Y1,d ≤ x < Y2,d)

= P (Yr+1,d′ ≤ x, Y1,d ≤ x) − P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x)

−P (Yr+1,d′ ≤ x, Y1,d ≤ x, Yr+2,d′ ≤ x) + P (Yr+1,d′ ≤ x, Y1,d ≤ x, Y2,d ≤ x, Yr+2,d′ ≤ x)

= exp

{
− 2x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′)x−1

}

− exp

{
− 3x−α −

∑∞
l=1

∑∞
k=−∞ max(al,k,d, al,k+r,d′ , al,k+1,d)x

−1

}

− exp

{
− 3x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+r+1,d′)x−1

}

+ exp

{
− 4x−α −

∞∑

l=1

∞∑

k=−∞

max(al,k,d, al,k+r,d′ , al,k+1,d, al,k+r+1,d′)x−1

}

∼ Ax−1 + 3x−2α,and
P (Y1,d ≤ x < Y2,d) = P (Y1,d ≤ x) − P (Y1,d ≤ x, Y2,d ≤ x)

∼ x−α +
∑∞

l=1

∑∞
k=−∞ max(al,k,d, al,k+1,d)x

−1 −
∞∑

l=1

∞∑

k=−∞

al,k,dx−1

= x−α + B x−1,Therefore, denoting µ(EM4)
dd′

r

for extended M4 pro
ess in (32), we have
µ(EM4)

dd′
r

=

{
0 , if α < 1

µ(M4)
dd′

r

, if α ≥ 1When α < 1, as x → ∞,
P (Yr+1,d′ ≤ x < Yr+2,d′ , Y1,d ≤ x < Y2,d)

P (Y1,d ≤ x < Y2,d)
1/ν

(EM4)

dd′
r

∼
Ax−1 + 3x−2α

[x−α + Bx−1]
1/ν

(EM4)

dd′
r

,whi
h implies, ν(EM4)
dd′

r

= max(1/2, α) with slowly varying fun
tion L
ν
(EM4)

dd′
r

(x) = 31{α≤1/2} +

A1{α>1/2}. If α ≥ 1, then ν(EM4)
dd′

r

= ν(M4)
dd′

r

= 1 with slowly varying fun
tion L
ν
(EM4)

dd′
r

≡ L
ν
(M4)

dd′
r

.Observe that 
oe�
ient ν(EM4)
dd′

r


oin
ides with η(EM4)
dd′

r

in (33).4.2 Levels that persist for a �xed period of timeThe main obje
tive of an extreme value analysis is to estimate the probability of events that aremore extreme than any that have already been observed. By way of example, suppose that a



16sea-wall proje
tion requires a 
oastal defense from all sea-levels, for the next 100 years. Extremalmodels are a pre
ious tool that enables extrapolations of this type. However, an adverse situationmay also be the permanen
y of high values in time. Draisma [7℄ broa
hes this problem with regardto su

essive high tide water levels registered on some pla
es of Holland's 
oast whi
h may damagethe sand dunes and hen
e give rise to devastating �oods. More formally, given a time series ofwater levels, {X1, ..., Xn}, he presents a new sequen
e {Yi}, su
h that,
Yi = min(Xi, ..., Xi+s), (34)where s is some �xed positive integer, that is, {Yi} is a sequen
e where ea
h observation yi isa value that persist for s + 1 su

essive periods of time. We will look at the extremal behaviorof {Yi} by 
onsidering �rst that {Xi} is an i.i.d. sequen
e and then 
onsidering two parti
ularstationary 
ases of {Xi}: pARMAX and ARMAX. The sequen
e {Yi} is obviously stationary,hen
e it exists a 
ommon marginal d.f., whi
h we will denote by FY . In the following we will usenotation at = F−1

Y
(1 − t).4.2.1 {Xi} is i.i.d.Let {Xi} be an i.i.d. sequen
e. We have that {Yi} satisfying (34) is (s+1)-dependent and satis�es
ondition D′(un) (Leadbetter et al. [16℄, 1983). Assuming the regularly varying 
ondition (38) andgiven the independen
e of {Xi},

1 − FY (x) = (1 − F (x))s+1 = x− 1
γ/(s+1) (LF (x))

s+1and hen
e, γ
Y

= γ/(s + 1). Observe also that
F−1

Y (1 − t) = F−1
(
1 − t1/(s+1)

)
.Considering the random pair (Y1, Y1+m) 
omposed by two r.v.'s with a lag-distan
e m, we have

P
(
Y1 > F−1

Y

(
1 − t

)
, Y1+m > F−1

Y

(
1 − t

))
=






t1+m/(s+1) , m ≤ s

t2 , m > s .and hen
e, ηm = (s + 1)/(s + m + 1) for m ≤ s and ηm = 1/2 for m > s, with Lm(t) = 1 for all
m ∈ N (for details see Ferreira and Canto e Castro [10℄, 2008). It is straightforward that λ(Y )

m = 0,for all m ∈ N, and hen
e, by (23), µ(Y )
m = 0, whi
h agrees with the fa
t that 
ondition D′(un) holdsand θ = 1 (Ferreira and Canto e Castro [10℄, 2008). From (28) we also have ϑ = 1.Now we fo
us on the 
al
ulation of 
oe�
ient ν(Y )

m . Note that,
P (Y2+m ≤ x < Y3+m, Y1 ≤ x < Y2) = 0, if m ≤ s. (35)For m > s, given the independen
e and stationarity of sequen
e {Xi}, we have

P (Y2+m ≤ x < Y3+m, Y2 ≤ x < Y1) = P (Y1 ≤ x < Y2)
2,and hen
e, ν(Y )

m = 1/2 and L
ν
(Y )
m

(t) = 1.4.2.2 {Xi} is stationary: pARMAX and ARMAXAs already mentioned, the motivation for studying the sequen
e of levels that persist for a �xedperiod of time emerges from its potential appli
ability to natural phenomenon data. Wheneverthe independen
e seems an unrealisti
 assumption, we must 
onsider dependent models. Max-autoregressive pro
esses have revealed very useful in what respe
ts the extremal analysis of timeseries. We 
onsider for sequen
e {Xi} the pro
esses, pARMAX and ARMAX, de�ned below in(36) and (37), respe
tively, given their suitably for extreme values modeling, easily derived �nite-dimensional d.f.'s and quite di�erent tail behavior 
on
erning measures based on ex
eedan
es of



17high values. See Ferreira and Canto e Castro [10℄ for details.Consider {Zi} a sequen
e of i.i.d. 
opies of r.v. Z with positive support and marginal d.f. FZ .A sequen
e {Xi} is said to be a pARMAX pro
ess if,
Xi = Xc

i−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ... (36)and is said to be an ARMAX pro
ess if,
Xi = cXi−1 ∨ Zi , 0 < c < 1, i = 0,±1,±2, ... (37)with Xi independent of Zj , for all integer i < j. For the sake of stationarity in the pARMAX 
ase,the innovations {Zi} have support in [1,∞[.We start by analyzing the pro
esses themselves (some auxiliary 
al
ulations are in Appendix),then we study sequen
e {Yi} of levels ARMAX and ARMAX persisting in time. We shall always
onsider, both with Pareto-type marginal d.f. F ,

1 − F (x) = x−1/γLF (x), (38)where LF is a slow varying fun
tion at +∞ and γ (the tail index) is positive, whi
h is the mostinteresting 
ase. Let {Xi} be a pARMAX pro
ess satisfying (36). Based on relations (A.4)-(A.8),we have that, as t ↓ 0,
P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ t21{cm≤1/2} + t1/cm

1{cm>1/2}and hen
e, by (18), we obtain ηm = max(1/2, cm) and Lm(t) = 1.1{cm≤1/2} + Lm(t).1{cm>1/2}with Lm(t) de�ned in (A.7) (see Ferreira and Canto e Castro [10℄ for details). We have λm = 0,for all m ∈ N and hen
e, by (23), we also have µm = 0. Observe that in pARMAX pro
esses thelo
al dependen
e 
ondition D′(un) holds and the extremal index is unit (θ = 1 − λ1). By relation(28) we have also an unit up
rossings index (i.e., ϑ = 1 − µ1 = 1).For a pro
ess {Xi} satisfying ARMAX re
ursion (37), we have that, as t ↓ 0,
P (X1 > F−1(1 − t), X1+m > F−1(1 − t)) ∼ tcm/γwhi
h leads to, ηm = 1 and Lm(t) = cm/γ , for all m ∈ N (see Ferreira and Canto e Castro [10℄ fordetails), and hen
e we have λm = cm/γ . In the ARMAX pro
esses the lo
al dependen
e 
onditionD′(un) does not hold and θ = 1− c1/γ (Alpuim [1℄ 1989), whi
h is in agreement with, respe
tively,Propositions 3.1 and 3.2 and remarks therein.Analogously, and repla
ing t by 1 − u, we 
an obtain the following probabilities, as u ↑ 1, inorder to derive µm in (23):

λ{3+m|2+m,2} ∼ P (F (X3+m) > u|F (X2+m) > u, F (X2) > u)

∼
1−3u+ u2

1−(1−u)c1/γ
+ u2

1−(1−u)c(m+1)/γ
+ u2

1−(1−u)cm/γ
− u3

(1−(1−u)cm/γ )(1−(1−u)c1/γ )

1−2u+ u2

1−(1−u)cm/γ

∼ c(m+1)/γ(1−u)
cm/γ(1−u)

∼ c1/γ ,

(39)
λ{3+m|2,1} ∼ P (F (X3+m) > u|F (X2) > u, F (X1) > u)

∼
1−3u+ u2

1−(1−u)c1/γ
+ u2

1−(1−u)c(m+1)/γ
+ u2

1−(1−u)c(m+2)/γ
− u3

(1−(1−u)c(m+1)/γ )(1−(1−u)c1/γ )

1−2u+ u2

1−(1−u)c1/γ

∼ c(m+2)/γ(1−u)

c1/γ(1−u)
∼ c(m+1)/γ ,

(40)



18and
λ{3+m,2+m|2,1} ∼ P (F (X3+m) > u, F (X2+m) > u|F (X2) > u, F (X1) > u)

∼

[
1−4u+ 2u2

1−(1−u)c1/γ + 2u2

1−(1−u)c(m+1)/γ + u2

1−(1−u)c(m+2)/γ + u2

1−(1−u)cm/γ

− 2u3(1−(1−u)c1/γ)−1

(1−(1−u)c(m+1)/γ )
− 2u3(1−(1−u)c1/γ)−1

(1−(1−u)cm/γ)
+ u4(1−(1−u)c1/γ)−2

(1−(1−u)cm/γ)

]/

[
1 − 2u + u2

1−(1−u)c1/γ

]

∼ c(m+2)/γ(1−u)
c1/γ(1−u)

∼ c(m+1)/γ ,

(41)
Hen
e, by (23), we also obtain µm = 0 in the ARMAX pro
ess. The lo
al dependen
e 
onditionD′′(un) holds (Canto e Castro [3℄, 1992) and by (28) we obtain up
rossings index ϑ = 1.Now we 
ompute 
oe�
ient νm in (21). Consider �rst the pARMAX pro
ess and at = F−1(1−

t). Based on the pARMAX relations (A.4)-(A.8), after some 
al
ulations we derive, as t ↓ 0,
P (X3+m > at, X2 > at) ∼ t2 + t1/cm+1

Lm+1(t),

P (X3+m > at, X2+m > at, X2 > at) ∼ t3 + t1/cm+1

Lm+1(t),

P (X3+m > at, X2 > at, X1 > at) ∼ t3 + t1/cm+2

Lm+2(t)and
P (X3+m > at, X2+m > at, X2 > at, X1 > at) ∼ t4 + t2/cL1(t)

2 + t1/cm+2

Lm+2(t)Therefore, we have that,
P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m) ∼ t2 − 2t3 + t4 + t2/cL1(t)2 ∼ t2and also P (X1 ≤ F−1(1 − t) < X2) ∼ t. Hen
e, by (21), we have νm = 1/2 and Lνm(t) ∼ 1 for all

m ∈ N whi
h 
orresponds to (almost) total independen
e. (See Proposition 2.5).For ARMAX pro
ess, if we apply (39)-(41) in (24), we have,
t1/νmLνm(t)∼ tc(m+1)/γ − tc(m+1)/γ − tc(m+2)/γ + tc(m+2)/γ ,leading us to a null limit. Going further on the rate of the approximation and based on relations(A.9)-(A.10), after some 
al
ulations, we obtain

P (X1 ≤ F−1(1 − t) < X2, X2+m ≤ F−1(1 − t) < X3+m) ∼ (1 − c1/γ)2(1 − cm/γ)t2, as t ↓ 0,as well as, P (X1 ≤ F−1(1 − t) < X2) ∼ t(1 − c1/γ). Hen
e, a

ording to (21), we have νm = 1/2and Lνm(t) = (1 − c1/γ)(1 − cm/γ).Now we turn to the sequen
e {Yi}. Deriving results in a dependen
e 
ontext for {Yi} involvesmore 
al
ulations and so, in the sequel, we restri
t ourselves to the 
ase s = 1 in (34), though wepresume that similar results will be valid for any �nite s.We treat �rst the 
ase where {Xi} is a pARMAX pro
ess as in (36). Based on relations(A.4)-(A.8) and after some 
al
ulations, we have, for m > 1,
P (Y1+m > at, Y1 > at) ∼ t21{cm≤1/2} + t1/cm

L(Y )

m+1(t)1{cm>1/2} (42)



19where slow varying fun
tion L(Y )

j (t) is given in (A.7) (details 
an be seen in Ferreira and Cantoe Castro [10℄, 2008). Hen
e it is straightforward that λ(Y )
m = 0 (agrees with the fa
t that D′(un)holds and θ = 1). The 
ase m = 1 is similar. Therefore, by (23), we obtain µ(Y )

m = 0 forall m ∈ N (hen
e ϑ = 1). Note that, from (42), we have η(Y )
m = max(1/2, cm) and L(Y )

m (t) ∼
1{cm≤1/2} + L(Y )

m+1(t)1{cm>1/2}.In order to 
ompute ν(Y )
m , observe that,

P (Y2+m ≤ x < Y3+m, Y1 ≤ x < Y2)

= P (Y3+m > x, Y2 > x) − P (Y3+m > x, Y2+m > x, Y2 > x)

−P (Y3+m > x, Y1 > x, Y2 > x) + P (Y3+m > x, Y2+m > x, Y2 > x, Y1 > x)

= P (X1 < x, X2+m < x) − P (X1 < x, X2 < x, X2+m < x)

−P (X1 < x, X3 < x, X2+m < x) − P (X1 < x, X2+m < x, X3+m < x)

−P (X1 < x, X2+m < x, X4+m < x) + P (X1 < x, X2 < x, X3 < x, X2+m < x)

+P (X1 < x, X2 < x, X2+m < x, X3+m < x) + P (X1 < x, X2 < x, X2+m < x, X4+m < x)

+P (X1 < x, X3 < x, X2+m < x, X3+m < x) + P (X1 < x, X3 < x, X2+m < x, X4+m < x)

+P (X1 < x, X2+m < x, X3+m < x, X4+m < x)

−P (X1 < x, X2 < x, X3 < x, X2+m < x, X3+m < x)

−P (X1 < x, X2 < x, X3 < x, X2+m < x, X4+m < x)

−P (X1 < x, X2 < x, X2+m < x, X3+m < x, X4+m < x)

−P (X1 < x, X3 < x, X2+m < x, X3+m < x, X4+m < x)

+P (X1 < x, X2 < x, X3 < x, X2+m < x, X3+m < x, X4+m < x).As already noti
ed in (35), the probability above is null if m = 1. By (A.4) and (A.5) and re
allingnotation at = F−1
Y

(1 − t), we have
P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2)

= F 2(at)

F
(
a
1/c1+m

t

) − F 3(at)

F
(
a
1/c
t

)
F
(
a
1/cm

t

) − F 3(at)

F
(
a
1/c

2

t

)
F
(
a
1/cm+1

t

) − F 3(at)

F
(
a
1/c
t

)
F
(

a
1/cm+1

t

)

− F 3(at)

F
(
a
1/c

2

t

)
F
(
a
1/cm+1

t

) + F 4(at)

F 2
(
a
1/c
t

)
F
(
a
1/cm−1

t

) + F 4(at)

F 2
(

a
1/c
t

)
F
(
a
1/cm

t

)

+ F 4(at)

F
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm

t

) + F 4(at)

F
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

)

+ F 4(at)

F 2
(
a
1/c2

t

)
F
(

a
1/cm−1

t

) + F 4(at)

F 2
(
a
1/c
t

)
F
(
a
1/cm+1

t

) − F 5(at)

F 3
(
a
1/c
t

)
F
(
a
1/cm−1

t

)

− F 5(at)

F 2
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

) − F 5(at)

F 3
(
a
1/c
t

)
F
(
a
1/cm

t

)

− F 5(at)

F 2
(
a
1/c
t

)
F
(
a
1/c2

t

)
F
(
a
1/cm−1

t

) + F 6(at)

F 4
(
a
1/c
t

)
F
(
a
1/cm−1

t

)

(43)



20Sin
e, as t ↓ 0, we have
1 − F

(
a1/cj

t

)
∼

{
t1/(2cj )

(
L(Y )

j (t)
)1/2

, c ≤ 1/2

t1/cj−1
L(Y )

j−1(t)
)

, c > 1/2 ,with slow varying fun
tion L(Y )

j (t) given in (A.7) (see Ferreira and Canto e Castro [10℄, 2008), ifwe apply (A.6)-(A.7), after some 
al
ulations we obtain, as t ↓ 0,
P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2) ∼ t2and also P (Y1 ≤ at < Y2) ∼ t. Therefore, by de�nition in (21), we have for pARMAX 
ase,

ν(Y )
m

= 1/2 and L
ν
(Y )
m

(t) ∼ 1.Regarding the ARMAX pro
ess in (37), we have
P (Y1+m > at, Y1 > at) ∼ tcm/γ ,as t ↓ 0 (see details in Ferreira and Canto e Castro [10℄, 2008), and hen
e we have, λ(Y )

m = cm/γ (inagreement with the fa
t that D′(un) does not hold and θ = 1− c
1/γ), η(Y )

m = 1 and L(Y )
m (t) ∼ cm/γfor all m ∈ N. A similar reasoning to that in (43) leads to

P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2)

= F 2(at)
F (at/c1+m) −

F 3(at)
F (at/c)F (at/cm) −

F 3(at)
F (at/c2)F (at/cm+1) −

F 3(at)
F (at/c)F (at/cm+1)

− F 3(at)
F (at/c2)F (at/cm+1) + F 4(at)

F 2(at/c)F (at/cm−1) + F 4(at)
F 2(at/c)F (at/cm) + F 4(at)

F (at/c)F (at/c2)F (at/cm)

+ F 4(at)
F (at/c)F (at/c2)F (at/cm−1) + F 4(at)

F 2(at/c2)F (at/cm−1) + F 4(at)
F 2(at/c)F (at/cm+1) −

F 5(at)
F 3(at/c)F (at/cm−1)

− F 5(at)
F 2(at/c)F (at/c2)F (at/cm−1) −

F 5(at)
F 3(at/c)F (at/cm) −

F 5(at)
F 2(at/c)F (at/c2)F (at/cm−1) + F 6(at)

F 4(at/c)F (at/cm−1)Sin
e we have, as t ↓ 0,
1 − F (at/cj) ∼ 1 − FY (cj−1at) ∼ c(j−1)/γtin the ARMAX 
ase (Ferreira and Canto e Castro [10℄, 2008), after some 
al
ulations we derive

P (Y2+m ≤ at < Y3+m, Y1 ≤ at < Y2) ∼ (1 − c1/γ)2(1 − c(m−1)/γ)t2,as well as,
P (Y1 ≤ at < Y2) ∼ (1 − c1/γ)t.Therefore, a

ording to (20) we have µ(Y )

m = 0 (agrees with the fa
t that D′′(un) holds; we havethen ϑ = 1), and by (21), ν(Y )
m = 1/2 and L

ν
(Y )
m

(t) ∼ (1 − c(m−1)/γ).5 Inferen
e: some notesThe estimation of 
oe�
ient µ 
an be made through the multivariate tail dependen
e 
oe�
ients
λXI ,YJ |XL,YK

given the relation stated in (7). Observe that they 
an be de�ned via the notion of
opula, introdu
ed by Sklar [24℄ (1959). A 
opula C is a 
umulative distribution fun
tion whosemargins are uniformly distributed on [0, 1], i.e., C(u1, ..., ud) = P (F1(X1) ≤ u1, ..., Fd(Xd) ≤ ud),where F1, ..., Fd are the 
ontinuous marginal d.f.'s of random ve
tor (X1, ..., Xd) and (u1, ..., ud) ∈
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[0, 1]d. The 
opula is unique as long as the marginal d.f.'s are 
ontinuous, a requisite that weassume. For instan
e, we have

λ = lim
u↑1

2 −
1 − C(u, u)

1 − u
= lim

u↑1
2 −

log C(u, u)

log u
.Parametri
 estimation methods, based on either a spe
i�
 distribution or family of distributions ora spe
i�
 
opula or family of 
opulas, as well as nonparametri
 estimation pro
edures are alreadyknown in literature. For a survey see Frahm et al. [13℄ (2005) and S
hmidt and Stadtmüller [23℄(2006). In the sequel we shall fo
us on nonparametri
 estimation.Under 
onditions somewhat wide in this 
ontext, S
hmidt and Stadtmüller [23℄ (2006) provestrong 
onsisten
y and asymptoti
 normality of the general nonparametri
 estimator

λ̂ZI |ZL
=

n∑

j=1

1
{R

(j)
nl >n−k, ∀l∈I∪L}

/ n∑

j=1

1
{R

(j)
nl >n−k, ∀l∈L}for the general 
oe�
ient λZI |ZL

, 
onsidering random ve
tor Z = (Z1, ..., Zd), where I ∪ L ⊂

{1, ..., d} (I ∩ L = ∅), R
(j)
nl denotes de rank of 
omponent Z

(j)
l , k = k(n) → ∞ and k/n → 0 as

n → ∞. In our 
ase, the most interesting situation is to 
onsider the non-independent sequen
e,
(X1, X2, Y1, Y2), (X3, X4, Y3, Y4),...,(Xn−1, Xn, Yn−1, Yn). If we assume a regularity 
ondition forthe joint tail of (X1, X2, Y1, Y2) and a uniform bound on the probability that both X1 and X2,or Y1 and Y2, belong to an extremal interval, similar to 
onditions (C2) and (C3) in Drees [9℄(2003), we still derive asymptoti
 normality with eventually modi�ed varian
e (see Proposition 2.1and Theorem 2.1 in Drees [9℄ 2003, and Theorem 6/10 in S
hmidt and Stadtmüller [23℄ 2006).Therefore, by plugging in the respe
tive tail dependen
e 
oe�
ient estimators in expression (7),we derive estimator,

µ̂ = (1 − λ̂X{2}|X{1}
)−1

[
λ̂Y |X − λ̂Y{2}|Y{1}

λ̂X{2}|Y{1,2}
− λ̂X{2}|X{1}

λ̂Y{2}|X{1,2}
+

+λ̂Y |X λ̂X{2},Y{2}|X{1},Y{1}

]
,whi
h is also strong 
onsistent (straightforward from Theorem 11 S
hmidt and Stadtmüller [23℄2006) and asymptoti
 normal. One important pra
ti
al problem arises in the optimal 
hoi
e of theparameter k whi
h relates to the usual varian
e-bias problem. An algorithm to 
hoose the optimalthreshold k 
an be seen in S
hmidt and Stadtmüller [23℄ (2006).Other estimators arise from the relation between µ and the up
rossings index ϑ whi
h in turnrelates with the extremal index θ by ϑ = τ

ς θ in (27). More pre
isely, under 
onditions ∆(un) and
D̃(3)(un), we have

µ1 = 1 − ϑ.with µ1 given in (20). Estimation of ϑ 
an be done through the extremal index θ, modi�ed by
onsistent estimates of the mean number of ex
eedan
es (τ) and the mean number of up
rossings(ς) of high levels. There are several estimators of the extremal index in literature. For a surveysee An
ona-Navarrete and Tawn [2℄.Now we 
onsider 
oe�
ient ν introdu
ed in (12). Given the relations stated with other param-eters well-known and studied in the literature, we 
an also derive quite straightforward estimatorsfor ν. More pre
isely, under 
onditions of Proposition 2.5, an estimator suggesting it-self is,
ν̂ = max(η̂, η̂X{2},Y{1,2}

, η̂X{1,2},Y{2}
, η̂X{1,2},Y{1,2}

),Observe that 
oe�
ient ηXI ,YJ in (13) 
orresponds to the tail index of r.v. min(XI , YJ ) for whi
hmany estimators with good properties have been established (hill, pi
kands, maximum-likelihood,



22moments, power weighted moments, are the most known). Other estimators have also been pro-posed. For a survey see Coles et al. [5℄ (1999), Peng [21℄ (1999) and Draisma et al. [8℄ (2004).In a future resear
h, we intend to derive other estimators and respe
tive asymptoti
 proper-ties, as well as analyze and 
ompare them with the above mentioned estimators through simulation.A Appendix: ARMAX and pARMAX pro
essesWe derive some useful properties about pro
esses pARMAX in (36) and ARMAX in (37), bothwith Pareto-type marginal d.f. F given in (38). We denote left-end-point, x∗, and right-end-point,
xF = +∞. Formulation (38) means also that 1 − F is a regularly varying fun
tion at ∞ of order
−1/γ. Equivalently, we 
onsider a regularly varying tail quantile fun
tion of order −γ,

F−1(1 − t) = t−γLF−1(t), (A.1)with fun
tion LF−1 slowly varying at 0. Sin
e,
F (F−1(1 − t)) ∼ F

(
t−γLF−1(t)

)
= 1 − t

[
LF−1(t)

]−1/γ
LF

(
t−γLF−1(t)

)
,we have the following relation between LF and LF−1 :

[
LF−1(t)

]−1/γ
LF

(
t−γLF−1(t)

)
∼ 1, t ↓ 0. (A.2)(A.3)The stationarity equation of pARMAX in (36) is given by

F (x) = F (x1/c)FZ(x) .whilst for ARMAX in (37) it is given by
F (x) = F (x/c)FZ(x) ,Using the latest, we derive the respe
tive m-step transition probability fun
tions (t.p.f.) from x to

] −∞, y]: for pARMAX pro
ess we have,
Qm(x, ] −∞, y]) := P

(
Xn+m ≤ y|Xn = x

)
= F (y)

F (y1/cm
)
1{

x≤y1/cm
}.and for ARMAX pro
ess it is given by,

Qm(x, ] −∞, y]) := P
(
Xn+m ≤ y|Xn = x

)
= F (y)

F (y/cm)1
{

x≤y/cm
},where 1{.} denotes the indi
ator fun
tion.In the following we derive multivariate d.f.'s within ea
h pro
ess.

• for pARMAX re
ursion in (36), we have
P (Xi ≤ y, Xj ≤ y) =

∫ y

x∗

Qj−i(x, ] −∞, y])F (dx) =
F 2(y)

F
(
y1/cj−i

) (A.4)Moreover, for the multivariate 
ase,
P (Xi1 ≤ y, .., Xik

≤ y)

=

∫ F−1(u)

x∗

...

∫ F−1(u)

x∗

Qik−ik−1
(
xik−1

, ] −∞, y]
)k−1∏

j=2

Qik−j−ik−j+1 (xik−j
, dxik−j+1

)F (dxi1 )

=
F k(y)

∏k
j=2 F

(
y1/cij−ij−1

)

(A.5)



23Observe now that,
F (F−1(1 − t)1/cj

) = F
(
t−γ/cj

(LF−1(t))1/cj
)

= 1 − t1/cj
Lj(t), (A.6)where

Lj(t) = (LF−1(t))−1/(γcj )LF

(
t−γ/cj

(LF−1(t))−1/cj
) (A.7)By (A.1)-(A.2), we have that

Lj(t) is slow varying, as t ↓ 0. (A.8)
• for ARMAX re
ursion in (37), in a similar manner we derive,

P (Xi ≤ y, Xj ≤ y) =
F 2(y)

F
(
y/cj−i

) (A.9)In the multivariate 
ase we have
P (Xi1 ≤ y, .., Xik

≤ y) =
F k(y)

∏k
j=2 F

(
y/cij−ij−1

)and
F (F−1(1 − t)/cj) = F

(
t−γ/cjLF−1(t)

)
= 1 − tcj/γ

Lj(t).where, by (A.1)-(A.2), we have
Lj(t) = (LF−1(t))−1/γLF

(
t−γ(LF−1(t))/cj

)
∼ 1, as t ↓ 0. (A.10)Referen
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