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Abstract Since Dorfman’s seminal work, the research on methodologies involving
pooled sample tests has been quite active (cf. [8]). Moreover, the use of pooled sam-
ples does not refer only to the classification problem (identifying all the infected
individuals in a population), since it may also be useful in estimating the prevalence
rate p, as [18] stated. The use of compound tests is not restricted to hierarchical al-
gorithms whose most common example is Dorfman’s two-stage procedure (cf. [4]).
Matrix schemes as the square array algorithm (cf. [16]) or multidimensional matri-
ces schemes (cf. [1]) in certain cases outperform Dorfman’s procedure (cf. [10]).
Maximum likelihood estimates are quite difficult to compute when a procedure does
not classify all individuals. This paper presents two innovator methods to compute
maximum likelihood estimates in both type of procedures.
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1 Introduction

The use of group testing procedures to screen for a binary characteristic is usually
set to have started from Dorfman’s (cf. [4]) seminal work. His purposed procedure
proved to be less expensive than applying only individuals tests in the detection of
the syphilis infected soldiers involved in the World War II. The new strategy was
to gather groups of n individuals into pools and then performing a pooled sample
test. A negative result of the pooled mixture indicates that all of them are free of the
disease. A positive result indicates that at least one of the » individuals has the dis-
ease, but we do not know who or how many. In this case, performing individual tests
is advised to identify the infected individuals in the sample from the non-infected
ones. The main issue is to determine the optimal batch size which minimizes the
expected number of tests as it is a good measure of the monetary cost, since the cost
of mixing samples is usually negligible (cf. [13]).

Pooled samples may be used in two types of problems: a classification problem
or an estimation problem. Identifying all the subjects that are infected or have a high
level of sugar in blood are examples of classification problems. In both examples it
is required to ascertain for each individual if it verifies the condition of interest.
Estimating the prevalence rate of a disease or of a gene in some population are ex-
amples of estimation problems. In this case, the performance of individual tests is
only optional, since the goal is no longer to identify the infected individuals (cf. [3]).
The use of only pooled samples has also the advantage of anonymity of the infected
members, given that they are not identified. Furthermore, the estimators obtained
by applying compound tests have, under certain conditions, better performance than
the traditional estimators based on individual tests, cf. [6, 14, 18]. The bias, the ef-
ficiency and the robustness of these estimators have been reviewed in several works,
such as those from [3, 7, 12]. [2] purposes the use of the package binGroup for the R
software, which includes applications of several compound testing estimators. Thus,
the estimators based on group testing not only allow to obtain monetary gains (by
decreasing the number of performed tests), but also allow to achieve more accurate
estimates, compared to those obtained on the basis of individual tests.

Group testing application can be done in several ways (cf. [10]). The main rea-
son for having different procedures is related to the misclassification problem, as
an individual can be wrongly classified. The sensitivity and the specificity of the
test (see Definition 1) may be used for measuring the accuracy of the test results. In
particular, the sensitivity of a test generally decreases as the pooled sample size in-
creases. The choice for a particular group testing procedure depends on the amount
of samples available and the sensitivity, the specificity and the monetary costs of
the process (cf. [13]). For an overview about this problem, known as the dilution
problem, see [9], [17], [20] and [21].

The outline of this work is as follows. Section 2 introduces the binomial model
assumption and discusses some considerations about the prevalence rate maximum
likelihood (ML) estimator when pooled samples are used. Section 3 describes the
two main types of group testing procedures and is the core of this work as new ways
of computing ML estimates are provided. For the hierarchical algorithms dealt in
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subsection 3.1 it is purposed a classification of an individual for estimation pur-
poses that does not need any individual tests. This allows the application of the
traditional ML estimators even when in the algorithm last stage no individual tests
are performed. The array-based group testing procedures are presented in subsec-
tion 3.2. In these kind of procedures, the ML estimates computation is very difficult
to perform. Hence, an iterative method is purposed in order to obtain reasonable
estimates that can be easily obtained. In section 4 some final remarks are discussed.

2 The Binomial Model

Let p denote the probability that an individual is infected, n be the pool sample size
and ¢ the number of performed tests. The total number of individuals is N = n X ¢.
Let us also assume that the individuals status (infected/not infected) within a pool
sample are independent. The probability of having an infected pooled sample is
7, = 1 — (1 —p)". Hence the total number of infected samples is described by a
binomial random variable T — Bin (¢, 7,). The ML estimator of 7, is

T, = e (1)

As p is given by a simple transformation of 7, it is straightforward to prove,
applying the proprieties of the ML estimators, that the ML estimator of p is

~ T 1/n
p1(1t> . )

Forn=1,p=1-(1- %) = % is an unbiased estimator of p. For n > 1, the
estimator is positively biased . Expressions for the estimator expected value and
variance may be found in [7].

As screening errors may occur, that model is, in practice, unrealistic. Thus, con-
sider the problem of estimating the prevalence rate of some disease. Let X; = 1
denote an infected individual and X; = 0 denote a non-infected individual. In addi-
tion, let X;" stand for a positive test result and X, stand for a negative test result. In

order to assess the sources of error two measures will be considered.

Definition 1. Consider an individual X; that is tested individually. The probability
@, =P (X;"|X; = 1) is called the test sensitivity and ¢, = P (X; |X; =0) is called
the test specificity.

When a pooled sample test is performed the probability of having a positive
result from an infected sample may decrease. As the amount of substance per unit
of volume is less or equal to the amount of substance found in a unit of volume
collected from an infected individual it may be difficult to screen the infected pool
sample as positive. However, the probability of getting a negative outcome on a non-
infected sample is equal to @, as there is no dilution problems. Thus, [17] define the
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concepts of specificity and sensitivity of some specific methodology of classification
or estimation .# (these concepts are closely related to the pooling sensitivity and
pooling specificity concepts defined in [10]). These measures assess the quality of
an outcome provided by some methodology .# .

Definition 2. The methodology sensitivity or the procedure sensitivity is the prob-
ability of an infected individual being correctly identified by the methodology .#,
that is, ¢; = P, (X;"|X; =1). The methodology specificity or the procedure
specificity stands for the probability of a non-infected individual being correctly
classified by the methodology .#, that is, (pé/// =Py (X; |X; = 0).

For an individual testing procedure the sensitivity (specificity) methodology is
equal to the test sensitivity (specificity). For instance, in the Dorfman’s procedure
and, admitting no dilution effect, the probability of an infected individual being
screened as positive is

0" =g, 3)

as it is required that both pooled and subsequent individual test outcomes to be
positive. Note that the methodology sensitivity is less than the test sensitivity, ie.,

0" < @, 4)

forn > 1.
For computing the probability of a non-infected individual being correctly clas-
sified it is necessary to account for three possible situations:

e the pooled sample is not infected and the pooled test outcome is negative;

e the pooled sample is not infected but the pooled test outcome is positive and the
subsequent individual test outcome is negative;

e the pooled sample is infected and the pooled test outcome is positive but in the
subsequent individual test the subject is correctly classified as non-infected.

Hence,

0 =9 (1-p)" V- (1-0)0.(1=p)" V0. (1-(1=p)" V). 5

The exponent n — 1 in equation (5) is due to the fact that we are computing a
conditional probability. These probabilities allows us to compute the real bias of

T
~_ T 6
P=x5 (6)
when the Dorfman’s procedure is applied. Now, 7 stands for the number of spec-
imens classified as positive. T is a binomial random variable described by 7' —~
Bin (N, p*). It depends on the methodology specificity (p// and on the methodology
sensitivity (p(// , therefore, p* = v (@y, @, p). [17] computed the value of p* by
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p* =P(X;"|D)P(D)+P(X;"|D)P (D)
= p+(1-0") (1-p) ™

1= + (" +0:" ~1) p.

Hence, the estimator is, in general, biased. The bias is equal to

Bias(p) =p" —p ®)

and the estimator variance is

pr(1=p")

var () = -

©)
The mean square error (MSE) of the estimator is, by definition,
MSE (p) = [Bias (p)]* + Var (p). (10)

Note that, for instance, if @;# = @;” = p = 0.5 the estimator is actually unbi-
ased. The mean square error is a possible measure for assessing the quality of the
estimates in each procedure. This measure may be used to combine different preva-
lence rate estimates. [3] uses a logistic regression whose parameters are computed
iteratively but measures the quality of each estimate just using the pooled sample
size. [15] provides an iterative meta-analysis-based procedure that uses the mean
square error as weights for achieving a single estimate. The content in subsection
3.2 enhances [15] work as it provides a computational method for estimating the
prevalence rate from an array-based group testing algorithm and, even more impor-
tant to that meta-analysis technique, it provides a way to estimate the MSE of the
estimator.

3 ML Estimators in Several Group Testing Procedures

On a pooled sample-based procedure there are two goals: minimizing the sources
of error and providing a less expensive method than individual testing for achieving
the investigation goal. To assess the savings of some procedure .#, the relative
cost will be used as a measure of the methodology efficiency, RC (.#), that is, the
expected number of tests per specimen since the cost of mixing samples is usually
negligible. When only individual tests are performed the methodology efficiency is
equal to one. In general, the methodology efficiency is high for low prevalence rates
as the pooled samples sizes tend to decrease with p. For instance, in the traditional
Dorfman’s procedure the maximum efficiency for a prevalence rate equal to 0.1,
0.01 and to 0.001 is obtained by using a pooled sample size equal to 4, 11 and 32,
respectively (cf. [4]).
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The most used pooled sample procedures can be binned in the following two
groups:

e Hierarchical algorithms — a pooled sample is tested and if the test outcome
is positive it is divided into smaller nonoverlapping groups until eventually all
individuals have been tested;

e Array-based group testing algorithms — in its simplest two-stage version
(square array), a sample of size n® is placed in a n x n matrix and then all the
individuals within the same row and the same column are gathered for batched
testing.

3.1 Hierarchical Algorithms

Dorfman’s procedure is just one example of a wider family called hierarchical al-
gorithms. Some improvements of his work have been made (cf. [5, 19, 20]) by
dividing positive pools into smaller subpools until eventually all positive specimens
are individually tested.

A multistage hierarchical algorithm is an algorithm that generalizes Dorfman’s
procedure to more than two stages, that is, a sample is divided at each stage into
smaller nonoverlapping groups until eventually all positive specimens are individ-
ually tested. At each stage, subsamples from the samples that tested positively are
retested. For practical reasons, only two or three stages are usually performed. Let
us consider an hierarchical algorithm with s stages and let n; denote the number
of individuals at the i-th stage. At the last stage, when the classification problem is
considered, we have n; = 1. However, this might not be fulfilled, when we just want
to estimate the prevalence rate, and the condition verified is just ny > --- > ng > 1
(cf. [3, 7, 12]). For low prevalence rates, the use of n; > 1 for achieving a greater
efficiency may be justified if a positive outcome when testing a pooled sample of
size ny at the last stage means (almost surely) that only one of the individuals is in-
fected (cf. [17]). Hence, when ng > 1 we will consider that, for estimation purposes,
an individual X; is correctly/wrongly classified (v'/x) according to the next table

Table 1 Correct and wrong decisions at the s-th stage

Pooled sample at the s-th stage

Infected Not infected
Xi=0 Test result + v X
Test result — v v
Xi=1 Test result + v Not possible
Test result — X Not possible
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One of the less intuitive shown classifications in Table 1 is, for an infected sam-
ple at the s-th stage, if the test outcome is positive the decision is correct. This is
almost 100% true as it means (almost surely) that only one is infected and that the
others individuals are not. Therefore, concerning the estimation problem, all the in-
dividuals are (almost surely) well classified as one infected and n; — 1 non-infected.
Hence, although we may not be able to set who is infected it is now straightforward
to compute the ML estimator (6). However, the given estimate may not be a ML
estimate since, although unlikely, it is possible to have two infected individuals at
the s stage.

3.2 Array-based Group Testing Algorithms

Array-based group testing is an alternative to hierarchical group testing that uses
overlapping pools. In its simplest two-stage version (square array), denoted by
A2(n: 1), a sample of size n? is placed in a n x n matrix in the following way.
Each individual is allocated at one and only one matrix position. Then, all the indi-
viduals within the same row and the same column are gathered for batched testing.
This process involves at least 2n tests as subsequent individual tests are performed
to the samples lying on a row and/or column that tested positively. A variant of this
methodology consists in performing a priori a pooled sample test to all the n? in-
dividuals (masterpool). If the masterpool test result is negative no further testing is
needed as the individuals are all negative classified. This methodology with a master
pool will be represented by MA2 (n2 n: 1). The performance of subsequent indi-
vidual tests is required to avoid ambiguities. For instance, it is possible to have a row
that tested positive but all columns tested negative. To obtain a greater efficiency we
suggest the dropping of the subsequent individual testing because it is not necessary
to determine who are exactly the infected individuals, when dealing with an estima-
tion problem . Let us look for a simple example of a square array procedure with
two lines (with or without) a master pool.

Example 1. [11] compares the operating characteristics of two square array proce-
dures with a master pool: MA2 (49 :7: 1) and MA2(100; 10; 1) when screening for
a disease in Malawi with prevalence rate 0.045. We computed the operating char-
acteristics of the last procedure without any individual tests: MA2(100; 10). In this
case, an individual is classified as positive if and only if both “row” and “column”
tested positive.

Hence, if all the columns (rows) tested negative and a row (column) tested pos-
itive, all the individuals are classified as negative. This approach although is much
more efficient than the others has a great drawback. It almost surely underestimate
the prevalence rate!

As it is not possible to use the proportion of defective individuals without avoid-
ing an underestimation of the prevalence rate, we propose the computation of a ML
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Table 2 Comparing the efficiency of the different methodologies

Methodology RC(.A) o7 0"

Indiviual test 1 0.9900 0.9000
MAS(49;7;1) 0.34 0.9995 0.6810
MAS(100;10;1) 0.31 0.9991 0.6596
MAS(100;10) 0.22 0.9990 0.7290

estimate, using a proper script. This will combine a greater efficiency with the com-
putation of an accurate estimate.

When the number of rows and columns of the two-dimensional array is low it is
possible to compute the exact value of the likelihood function for a given prevalence
rate po. For an array with two rows and two columns it is easy although hardworking
to write a script to compute the ML function for any value. Hence, a proper iterative
process gives the ML estimate.

The inputs of the script must be the test sensitivity ¢y, the test specificity ¢, and
the number of arrays that have i — 1 positive rows and j — 1 positive columns for
i=1,2,3and j=1,2,3. These values may be inserted on a 3 x 3 matrix O.

For computing the ML function at py it is also required to compute the probability
of observing i — 1 positive rows and j — 1 positive columns, where i = 1,2,3 and j =
1,2,3, given pg and taking into account the test sensitivity ¢, and the test specificity
@.. Suppose these values are recorded in a matrix P. For instance, if ¢; = @, = 0.95
(consider that the individual test sensitivity is equal to the pooled sample sensitivity)
and p; = 0.1. The matrix F is

0.5351 0.0689 0.0029
Py= | 0.0689 0.2477 0.0277
0.0029 0.0277 0.0183

As the matrix of a square array is always symmetric it can be written as an upper
triangular matrix

0.5351 0.1378 0.0058
P= 0 0.2477 0.0554
0 0 0.0183

In this case, the matrix O must be also rewritten as O(i, j) = O(i, j) + O(j,i)
for j > i. Note that it is expected to have near of 14% of the arrays with only one
positive row (column) and no positive columns (rows). In the traditional application
of a square array methodology, this would require the performance of individual
tests. The ML function for py is given by
3

P(i, j)*). (11)

1

e

ML(po) =
L
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Example 2. To assess the MSE of the estimator, for a prevalence rate p = 0.1, 100
replicas of a 2 x 2 array (A2(2 : 1)) were simulated in software MatLab R2011 and
the ML estimate was computed. This procedure was repeated 1000 times to produce
1000 prevalence rate estimates. The matrix O was set to be equal to the matrix P.
Although, in practice, the matrix O only admits integers values, that is not important
for our intents.

The estimates mean value was 0.1189 with standard error 0.0120. The 5% and
95% percentiles are, respectively, 0.1029 and 0.1408. Thus, an estimate for the esti-
mator mean square error is

MSE (ML) = 5.01 x 10~*. (12)

To evaluate the estimator MSE we will compare these results with the ones ob-
tained using the Dorfman’s procedure. The optimal batch size for p = 0.1 is n = 4.
By (8), (9) and (10), the mean square error is given by

0.102291
400

The MSE is the same for both methods. Moreover both present a problem of
overestimation due to the test sensitivity and specificity.

MSE (p) = 0.015671% + =5.01x107%. (13)

However, when the number of rows and columns is just as high as 3 or more it
is not easy to use the previous method to compute a value of the ML function. In
this case, we suggest the computation of an estimate for the ML function value for
a given prevalence rate in the following way.

1. Record in a matrix O of size r x ¢ the number of two-dimensional arrays with
i— 1 positive rows and j — 1 positive columns where i =1,---,rand j=1,---,c.

2. For some possible prevalence rate values p, chosen in some logical sequence (for
instance, 0,0.1,0.2,---,1) simulate a reasonable number of replicas rep of the
possible matrices.

3. Compute the probability of observing i — 1 positive rows and j — 1 positive
columns for each replica (taking into account the test sensitivity ¢, and the test
specificity ., and store that value in the position (i — 1, j — 1) of the matrix P).
Add the probabilities computed for all the replicas and multiply P by 1/rep.

4. Compute the ML function for the matrix O using the values of P.

ML(po) = [T T (i)

i=1j=1

5. Compare the ML function for each prevalence rate estimates and chose the two
estimates with the highest ML function value.

6. Repeat the process from step two until the difference between the ML function
at the two points chosen in step five be lower than some prefixed tolerance.

7. The estimate is the weighted mean value between those two points, say p; and
p2, using as weights ML (p;) and ML (p,), i.e.,
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ML (p1) x p1 + ML(p>) X p>
ML (p1)+ML(p>)

p=

P(i, j) is an estimate of the probability of having i — 1 positive rows and j — 1
positive columns in an array. In practice, the values for p in step two don’t have to
span all the interval [0, 1] as the use of pooled samples is advised only to prevalence
rates lower than about 1/3.

Let us look at the following example.

Example 3. Consider a matrix O generated by simulating 1000 replicas of a square
array A2(4 : 1) for a prevalence rate p = 0.01 and ¢; = @, = 0.99 using software
MatLab R2011.

76 4 000
414000
O=]101100
0 0000
0 0000

The total proportion of infected individuals of this simulation was, by chance,
equal to the prevalence rate p = 0.01.

For computing a ML estimate for the prevalence rate given this matrix O, 100
square arrays were simulated to compute each matrix P. Hence, the sample size is
4% % 100 = 1600. Then, 100 estimates were, independently, computed. The estimates
mean value was 0.0148 with standard error 0.0027. The 5% and 95% percentiles are,
respectively, 0.0113 and 0.0183. Thus, an estimate for the estimator mean square
error is

MSE (ML) = 3.02 x 1075, (14)

Once again, in order to evaluate the estimator MSE we will compare these results
with the ones obtained using the Dorfman’s procedure. The optimal batch size for
p =0.01 is n = 11. The mean square error is given by

0.011636
1600

The MSE of both estimators are similar. Thus, the estimates given by this al-
gorithm seem to be reliable. However, we are not performing a formal comparison
between the two methods as there isn’t no way, at least to our knowledge, to find
the optimal array-based group testing design for a given estimation problem (unless
one supposes there is no test errors, cf. [11]).

MSE (p) = 0.00177% + =1.04x107°. (15)

4 Final Remarks

The main achievement of this work is the dropping of the individual tests when we
just want to determine a prevalence rate estimate.
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When one is dealing with an hierarchical method, Table 1 shows how to interpret
a result at the last stage of the procedure in order to produce an estimate. It will be
at least very close to the proportion of defective subjects computed using individual
tests at that stage.

The use of square array methodologies is only possible with the advent of robotic
pooling. These methods can be very efficient if no individual tests are performed.
The iterative method for computing a ML estimate allows the use of that kind of
strategies and the computational cost does not have to be very high in order to ob-
tain accurate estimates (comparing to Dorfman’s procedure). One problem that stills
unsolved is to find a method to easily identify the best array to use in a given sit-
uation. This issue will be dealt in a future work. A generalization of this iterative
method to higher dimensional arrays is straightforward. More details on the use of
arrays with dimensions higher than two is discussed by [11].
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