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1 Introduction

The Fisher and Tippett theorem of extreme values (Fisher and Tippett, 1928) states that all

possible non-degenerate weak limit distributions of normalized partial maxima of independent,

identically distributed (i.i.d.) random variables (r.v.’s) X1, X2, · · · , Xn · · · are (generalized)

extreme value distributions. That is, if there are normalizing constants an > 0 and bn such

that, for all x,

lim
n→∞

P
{
a−1

n (max (X1, · · · , Xn)− bn) ≤ x
}

= G(x), (1.1)
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where G is some non-degenerate distribution function (d.f.), we can redefine the constants in

such a way that the limit G is one of a one-parameter family of distributions,

Gγ(x) :=

{
exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0
, (1.2)

the (generalized) extreme value distributions, given here in the von Mises-Jenkinson form (von

Mises, 1936; Jenkinson, 1955). We say that the d.f. F of the r.v.’s X1, X2, · · · is in the domain

of attraction of Gγ if (1.1) holds with G = Gγ , and use the notation F ∈ DM (Gγ).

For the application of extreme value theory it is necessary to estimate the parameter γ.

Several estimators for γ have been proposed in the literature. We mention Hill’s estimator

(Hill, 1975), valid in the range γ > 0, Pickand’s estimator (Pickands, 1975), the so-called

“maximum likelihood” or ML estimator (Smith, 1987), based on the approximate Paretian

behaviour of the log-excesses over a high random threshold and valid for γ > −1/2, the

probability weighted moment estimator (Hosking and Wallis, 1987), valid for γ < 1/2, the

moment estimator (Dekkers, Einmahl and de Haan, 1989) and the generalized Hill estimator

(Beirlant, Vynckier and Teugels, 1996; Beirlant, Dierckx and Guillou, 2005).

In order to develop a new estimator, consider a combination of Theorems 2.6.1 and 2.6.2

of de Haan, 1970: a d.f. F , with right endpoint

xF := sup {t : F (t) < 1} ∈ (0,+∞],

is in the domain of attraction of the extreme value d.f. Gγ , i.e., (1.1) holds with G = Gγ and

X1, X2, · · · have d.f. F , if and only if

lim
t→xF

(1− F (t))
∫ xF

t

∫ xF

y (1− F (x))x−2dx dy

t2
(∫ xF

t (1− F (x))x−2dx
)2 = ϕ(γ) :=

{
1 + γ if γ > 0
1−γ
1−2γ if γ ≤ 0

. (1.3)

Let Xi, 1 ≤ i ≤ n, be n i.i.d. r.v.’s with d.f. F ∈ DM (Gγ), and let Xi,n, 1 ≤ i ≤ n,

denote the associated ascending order statistics. We can build a statistic starting from the left

hand-side of (1.3), noticing that it can be written as

(1− F (t))−1
{∫ xF

t ln x
t dF (x)−

∫ xF

t

(
1− t

x

)
dF (x)

}
{

(1− F (t))−1
∫ xF

t

(
1− t

x

)
dF (x)

}2 =
E
(
ln
(

X
t

)
|X > t

)
− E

(
1− t

X |X > t
)

E2
(
1− t

X |X > t
) ,

and replacing F and t by the empirical d.f. Fn and a high random threshold Xn−k,n with k < n,

respectively. The result is

ϕ̂n(k) :=
M

(1)
n (k)− L

(1)
n (k)(

L
(1)
n (k)

)2 , (1.4)
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where, we define for all j ≥ 1,

L(j)
n (k) :=

1
k

k∑
i=1

(
1−

Xn−k,n

Xn−i+1,n

)j

, M (j)
n (k) :=

1
k

k∑
i=1

(
ln

Xn−i+1,n

Xn−k,n

)j

. (1.5)

The statistic in (1.4) is easily transformed into what we call the Mixed Moment (MM)

estimator for the extreme value index γ ∈ R:

γ̂MM
n (k) ≡ γ̂MM

n (k;Xn−j+1,n, 1 ≤ j ≤ k + 1) :=
ϕ̂n(k)− 1

1 + 2 min (ϕ̂n(k)− 1, 0)
. (1.6)

Since the estimator in (1.6) is not location invariant, we also propose an alternative class of

extreme value index estimators, invariant for changes in location, and dependent on a tuning

parameter p, 0 < p < 1. Such an estimator has the same functional expression of the estimator

in (1.6), but the original sample, Xi, 1 ≤ i ≤ n, is replaced everywhere by

X∗i := Xi −X[np]+1,n, 0 < p < 1, 1 ≤ i ≤ n.

We shall thus define for any p ∈ (0, 1),

γ̂MM
n (k; p) := γ̂MM

n (k;Xn−j+1,n −X[np]+1,n, 1 ≤ j ≤ k + 1). (1.7)

A similar procedure can be applied to estimators like the Hill, the moment and the generalized

Hill estimators, and has already been used for quantile estimation in Araújo Santos, Fraga

Alves and Gomes, 2006.

The estimator in (1.6) seems an interesting alternative to the most popular extreme value

index estimators for a general γ ∈ R. The most attractive features of this new estimator are:

• It is valid for any γ ∈ R and, contrary to the ML estimator (valid only for γ > −1/2),

it has a simple explicit functional form, similar to the ones of Pickands, moment and

generalized Hill estimators, also valid for all γ ∈ R.

• It is very close to the ML estimator for a large class of models with γ ≥ 0.

• A shift invariant version with similar properties is available, the one provided in (1.7).

The asymptotic variance of the estimators in (1.7) is the same and the dominant com-

ponent of asymptotic bias is never bigger, provided we keep to adequate k-values and

choose an adequate tuning parameter p whenever γ ≤ 0.

• There are accompanying shift and scale estimators that make e.g. high quantile estimation

straightforward.
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The scope of this paper is as follows. In section 2, we state the main results leading to

weak consistency and asymptotic normality of the estimator in (1.6) and its location invariant

version in (1.7). Section 3 is devoted to a small-scale Monte Carlo simulation, illustrating the

performance of the new proposed estimators. In section 4 we state and prove a few auxiliary

results needed in section 5, where we provide the proofs of the theorems in section 2.

2 Main results

The following extended regular variation property (de Haan, 1984) is a well-known necessary

and sufficient condition for F ∈ DM (Gγ):

lim
t→∞

U(tx)− U(t)
a(t)

=

{
xγ−1

γ if γ 6= 0

lnx if γ = 0
, (2.1)

for every x > 0 and some positive measurable function a, with U standing for a quantile type

function associated to F and defined by

U(t) :=
(

1
1− F

)←
(t) = inf

{
x : F (x) ≥ 1− 1

t

}
, t ≥ 1.

2.1 Consistency and asymptotic normality of the MM class of estimators

Theorem 2.1. Suppose that F has a right endpoint xF = U(∞) > 0 and (2.1) holds for some

γ ∈ R. Let k = kn be an intermediate sequence, i.e., a sequence of positive integers kn such

that kn →∞ and kn = o(n), as n →∞. Then,

lim
n→∞

ϕ̂n(k) = ϕ(γ)

in probability, with ϕ(γ) defined in (1.3).

Corollary 2.1. Under the conditions of Theorem 2.1, the mixed moment estimator γ̂MM
n (k)

is a consistent estimator of the extreme value index γ ∈ R, i.e., for any intermediate sequence

k = kn,

γ̂MM
n (k) P−→

n→∞
γ.

Apart from the first order condition in (2.1), we shall now need a second order condition,

specifying the rate of convergence in (2.1). We shall assume the existence of a function A,

possibly not changing in sign and tending to zero as t →∞, such that

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x) :=

1
ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
(2.2)

4



for all x > 0, where ρ ≤ 0 is a second order parameter controlling the speed of convergence

of maximum values, linearly normalized, towards the limit law in (1.2). Under these circum-

stances, we say that the function U is of second order extended regular variation, and use the

notation U ∈ 2ERV (γ, ρ). We remark that lim
t→∞

A(tx)/A(t) = xρ, for every x > 0, i.e., |A| is

regularly varying with an index of regular variation equal to ρ. We denote this by |A| ∈ RVρ.

From Theorem A in Draisma, de Haan, Peng and Pereira, 1999, together with the modifi-

cations in Ferreira, de Haan and Peng, 2003 and de Haan and Ferreira, 2006, we know that if

xF > 0 and there exist a(·) and A(·) such that (2.2) holds, with ρ ≤ 0, γ 6= ρ, then, with

A(t) :=
(

a(t)
U(t)

− γ+

)
, γ+ := max(0, γ), (2.3)

and

l := lim
t→∞

(
U(t)− a(t)

γ

)
∈ R for γ + ρ < 0, (2.4)

we have

A(t) −→
t→∞

0 (see Lemma 4.1) and
A(t)
A(t)

−→
t→∞

c,

with

c =


0 if γ < ρ ≤ 0
γ

γ+ρ if 0 ≤ −ρ < γ or (0 < γ < −ρ and l = 0)

±∞ if γ + ρ = 0 or (0 < γ < −ρ and l 6= 0) or ρ < γ ≤ 0

. (2.5)

Let us define

B(t) :=

{
A(t) if c = ±∞
A(t) otherwise

, (2.6)

with A(t) the function in (2.3).

Theorem 2.2. Assume that U satisfies (2.2), with the restriction γ 6= ρ, and that xF > 0.

Let k = kn be an intermediate sequence, let c be the limit in (2.5) and let B be the function in

(2.6). If we further assume that

λ := lim
n→∞

√
k B(n/k) (2.7)

is finite, we may guarantee that
√

k (ϕ̂n(k)− ϕ(γ)) d−→
n→∞

N
(
λ bϕ, σ2

ϕ

)
,

where

bϕ = bϕ(γ, ρ) :=



1−γ
(1−2γ)(1−γ−ρ)(1−2γ−ρ) if γ < ρ ≤ 0

−4γ(1−γ)
(1−2γ)2(1−3γ)

if ρ < γ < 0
1+γ

(1−ρ)(1+γ−ρ) if c = γ
γ+ρ

0 otherwise
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and

σ2
ϕ = σ2

ϕ(γ) :=

{
(1 + γ)2 if γ ≥ 0

(1−γ)2(6γ2−γ+1)
(1−2γ)3(1−3γ)(1−4γ)

if γ < 0
.

Corollary 2.2. Under the conditions of Theorem 2.2

√
k
(
γ̂MM

n (k)− γ
) d−→

n→∞
N
(
λ b, σ2

)
,

where b = bMM (γ, ρ) :=

{
bϕ(γ, ρ) if γ ≥ 0

(1− 2γ)2bϕ(γ, ρ) if γ < 0
and

σ2 = σ2
MM

(γ) :=

{
σ2

ϕ(γ) if γ ≥ 0

(1− 2γ)4σ2
ϕ(γ) if γ < 0

.

We may further specify a non-null asymptotic bias in the region where bϕ = 0, the region

R := {(γ, ρ) : ρ < γ = 0 or (0 < γ < −ρ and l 6= 0) or γ = −ρ}. It is then necessary to split

R in three regions, R = R0 ∪R1 ∪R2, with R0 := {(γ, ρ) : γ = −ρ/2},

R1 := {(γ, ρ) : ρ < γ = 0 or (0 < γ < −ρ/2, l 6= 0)} ,

R2 := {(γ, ρ) : (−ρ/2 < γ < −ρ, l 6= 0) or γ = −ρ} .

Note that in R1, A = o
(
A

2) and in R2, A
2 = o(A).

Theorem 2.3. Under the conditions in Theorem 2.2, if we now further assume that in the

region R1 ∪R2,

λ := lim
n→∞

{ √
k A

2(n/k) if (γ, ρ) ∈ R1√
k A(n/k) if (γ, ρ) ∈ R2

is finite, we may guarantee that

√
k (ϕ̂n(k)− ϕ(γ)) d−→

n→∞
N
(
λ b0, σ

2
0

)
,

where

b0 = b0(γ, ρ) :=


2(1+γ)

(1+2γ)2(1+3γ)
if (γ, ρ) ∈ R1

1+γ
(1−ρ)(1+γ−ρ) ≡ bϕ if (γ, ρ) ∈ R2

and σ2
0 = σ2

ϕ = (1 + γ)2.

Remark 2.1. Corollary 2.2 remains valid under the conditions of Theorem 2.3, with bϕ re-

placed by b0.
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2.2 Asymptotic relations between estimators

We first compare the estimator in (1.6) with the moment estimator,

γ̂M
n (k) := M (1)

n (k) + 1
2

{
1− (M (2)

n (k)/[M (1)
n (k)]2 − 1)−1

}
, (2.8)

with M
(j)
n given in (1.5). We shall next compare the Mixed Moment estimator in (1.6) with the

so-called Maximum Likelihood (ML) estimator, γ̂ML
n (k), obtained on the basis of the excesses

Xn−i+1,n−Xn−k,n, 1 ≤ i ≤ k. These excesses are approximately distributed as the k top order

statistics associated to a sample of size k from a Generalized Pareto (GP ) d.f., given by

GPγ(x;σ) =

{
1− (1 + γx/σ)−1/γ , x ≥ 0, 1 + γ x/σ > 0 if γ 6= 0

1− exp (−x/σ) , x ≥ 0 if γ = 0
,

with σ > 0. The asymptotic behaviour of γ̂ML
n (k) has been worked out by Smith, 1987 and

Drees, Ferreira and de Haan, 2004. We shall prove the following result:

Theorem 2.4. Let γ̂ML
n (k) be a sequence of solutions of the maximum likelihood equations

associated to the above mentioned set-up and let us consider the moment estimator γ̂M
n (k)

defined in (2.8). Assume also that F ∈ DM(Gγ), (2.2) holds with γ 6= ρ and k = kn is an

intermediate sequence such that
√

k B(n/k) → 0, as n → ∞, with B the function in (2.6).

Then,

• if γ ≥ 0,
√

k
(
γ̂MM

n (k)− γ̂ML
n (k)

) P−→
n→∞

0; (2.9)

• if γ ≤ 0,
√

k
(
γ̂MM

n (k)− γ̂M
n (k)

) P−→
n→∞

0. (2.10)

Furthermore, if
√

k A(n/k) = O(1), as n → ∞, and γ ≥ 0 or
√

k A(n/k) = O(1), as n → ∞
and

(
l = 0 or γ > −ρ/2, l 6= 0

)
then (2.9) still holds, whereas if

√
k A(n/k) = O(1), as n →∞

and γ < ρ ≤ 0, (2.10) is also valid.

Remark 2.2. In the region {0 < γ ≤ −ρ/2, l 6= 0}, we can no longer guarantee the validity of

(2.9) for levels k such that
√

k A(n/k) = O(1), as n →∞. Indeed, if {0 < γ < −ρ/2, l 6= 0},
the bias of the ML estimator is of a smaller order than the bias of the MM estimator. We

thus expect, in this region, a better performance of the ML estimator, comparatively to the

MM estimator. Note however that in this same region, the asymptotic bias of MM(k) is of

the order of A
2(n/k), i.e., of a smaller order than A(n/k), the asymptotic bias of the Hill, the

moment and the generalized Hill estimators.
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Remark 2.3. For heavy-tailed models, and regarding bias, the new estimator compares

favourably with the classical Hill estimator, γ̂H
n (k) ≡ M

(1)
n (k), with M

(1)
n (k) given in (1.5),

in the whole (γ, ρ)-plane. Indeed, for levels k such that
√

k A(n/k) → λ 6= 0, the ones that

are usually considered under a heavy-tailed second order framework, the asymptotic bias of
√

k
(
γ̂H

n (k)− γ
)

is equal to λ/(1− ρ) =: λbH , whereas we are now able to get a null bias in the

region γ + ρ ≤ 0. Moreover, (1 + γ)(1 + γ − ρ) < 1 for all γ > 0, ρ < 0, i.e., bMM < bH in all

semi-plane γ > 0. A similar remark applies to the moment’s estimator.

2.3 Asymptotic behavior of the location invariant versions

If we consider the shift invariant version of the extreme value index estimator in (1.6), i.e.,

the estimator in (1.7), the asymptotic variance of γ̂MM
n (k; p) is kept at the same level and the

dominant component of bias changes only in a few cases, as may be seen in the following:

Theorem 2.5. Assume that all the requirements in Theorem 2.2 hold, except possibly the

requirement xF > 0. Assume further that U has a positive derivative at the point 1/(1 − p).

Then, for the same levels k as in Theorem 2.2, i.e., intermediate levels k such that (2.7) holds,

for λ finite,
√

k
(
γ̂MM

n (k; p)− γ
) d−→

n→∞
N
(
λb∗, σ2

)
,

with

b∗ = b∗(γ, ρ, p) :=

{
b if γ > 0 or γ < ρ ≤ 0

b xF

xF−U(1/(1−p))
if ρ < γ ≤ 0

,

where b and σ2 are defined in Corollary 2.2 and xF /
(
xF − U(1/(1− p))

)
is interpreted as 1

when xF = ∞.

Remark 2.4. Recall that in the region 0 < γ ≤ −ρ/2, l 6= 0, in order to get a possibly non

null and finite value for the asymptotic bias, like the one provided in Theorem 2.3, we had

to consider k values such that
√

k A
2(n/k) → λ, finite, as n → ∞. For these values of k,

the changes in the asymptotic bias are then significant, when we consider the shift invariant

estimator. Everything depends on the relative behaviour of the three regularly varying functions,

A
2, A/U and 1/U2, all with an index of regular variation equal to −2γ. This is the main reason

why we think sensible to restrict ourselves to levels k such that
√

k A(n/k) → λ, getting then

a null value for b.
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2.4 An estimator for the scale a(n/k)

In order to tackle the extreme quantile estimation problem, we shall next introduce an estimator

for the scale a(n/k), on the basis of the fact that not only

Xn−k,n L
(1)
n (k) (1 + |γ|)

a(n/k)
P−→

n→∞
1

(see Proposition 4.2), but also that it is possible to combine L
(1)
n (k) and L

(2)
n (k), both given

in (1.5), in order to obtain a consistent estimator for 1 + |γ| (see Proposition 4.2, again).

Specifically,

1
2

1−

(
L

(1)
n (k)

)2

L
(2)
n (k)


−1

P−→
n→∞

1 + |γ|,

and this enables us to introduce the following estimator for a(n/k):

â
(n

k

)
:=

Xn−k,n

2
× L

(1)
n (k) L

(2)
n (k)

L
(2)
n (k)−

[
L

(1)
n (k)

]2 . (2.11)

Theorem 2.6. Suppose F satisfies (2.1) for some γ ∈ R and xF > 0. Let k = kn be an

intermediate sequence. Then, with â(n/k) given in (2.11),

â(n/k)
a(n/k)

P−→
n→∞

1. (2.12)

Let us further assume that the second order condition (2.2) holds with γ 6= ρ, and that, with A

and c given in (2.3) and (2.5), respectively, (2.7) holds, for λ finite. Then,

√
k

(
â(n/k)
a(n/k)

− 1
)

d−→
n→∞

N
(
λb∗, σ

2
∗
)
,

where

b∗ = b∗(γ, ρ) :=


− ρ

(1−γ−ρ)(1−2γ−ρ) if γ < ρ ≤ 0
2 γ

(1−2γ)(1−3γ) if ρ < γ ≤ 0
(1+γ)(1+2γ−2ρ)

(γ+ρ)(1+γ−ρ)(1+2γ−ρ) if c = γ
γ+ρ

− 2γ
(1+2γ)(1+3γ) otherwise

,

and

σ2
∗ = σ2

∗(γ) :=
(
γ+

)2 +
2(1 + |γ|)2

(
1 + 6|γ|+ 12γ2

)
(1 + 2|γ|)(1 + 3|γ|)(1 + 4|γ|)

, γ ∈ R.
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Theorem 2.7. Assume that the second order condition (2.2) holds, with γ 6= ρ, and that

xF > 0. Let k = kn be an intermediate sequence such that (2.7) holds, for λ finite. Then

√
k

(
γ̂MM

n (k)− γ,
â(n/k)
a(n/k)

− 1,
Xn−k,n − U(n/k)

a(n/k)

)
d−→

n→∞
(Γ, Λ, B) ,

where (Γ, Λ, B) has a joint normal distribution with mean vector (λb, λb∗, 0), b and b∗ provided

in Corollary 2.2 and Theorem 2.6, respectively, and covariances given by: Cov(Γ, B) = 0,

Cov (Γ,Λ) =

{
− (1−γ)2(12γ2−4γ+1)

(1−2γ)4(1−3γ)(1−4γ)
if γ ≤ 0

− (1+γ)2

1+3γ if γ > 0
; Cov (Λ, B) =

{
0 if γ ≤ 0

−γ if γ > 0
.

3 Finite sample properties

We have run a small-scale Monte Carlo simulation, on the basis of N = 1000 runs, for un-

derlying Fréchet(γ) parents, with d.f. F (x) = exp(−x−1/γ), x ≥ 0 (γ = 1), for a sample size

n = 1000 (ρ = −2, ρ̃ = −1, c = −∞, l = −1/2). In Figure 1, we picture the mean values

(E) and the mean squared errors (MSE) of the mixed moment estimator in (1.6) and its

location invariant versions in (1.7) associated to p = 0.01 and p = 0.25. We use for these three

estimators the obvious notation MM , MM (0.01) and MM (0.25), respectively. For comparison,

we also picture the same characteristics for the Hill, the Moment, the generalized Hill and the

POT -maximum likelihood estimators, denoted H, M , GH and ML, respectively. The gener-

alized Hill estimator can be written as a functional of the Hill estimators, γ̂H
n (i) = M

(1)
n (i),

1 ≤ i ≤ k, with M
(j)
n (k) given in (1.5), i.e., we have

γ̂GH
n (k) = γ̂H

n (k) +
1
k

k∑
i=1

{
ln γ̂H

n (i)− ln γ̂H
n (k)

}
.

For a Fréchet model with γ = 1, we have γ = −ρ/2 and l 6= 0, i.e., we are in the region

mentioned in Remark 2.2, where we cannot guarantee asymptotic equivalence between the

ML and the MM estimators for levels k such that
√

k A(n/k) = O(1), as n → ∞. However,

the mean value of the MM estimator (Figure 2, left) provides some evidence of a better

performance of the MM estimator comparatively to all alternative estimators under study in

this paper. As expected, for models with a left endpoint at zero like this one, the shift invariant

alternatives reveal a poor and poor performance as p increases.

This same type of graph appears for other models, and makes clear the importance of the

new class of estimators. Note also that the class of estimators in (1.7) is location invariant, and

such a nice property has been obtained practically without any kind of payment: the variance

of the new class of estimators is the same, and the bias may even be smaller, as may be seen
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Figure 1: Mean values (left) and mean squared errors (right) of the MM estimators, together with the alternative

estimators H, M , GH and ML, for samples of size n = 1000 from a Fréchet(1) model.

in Figure 2, equivalent to Figure 1, but for underlying extreme value Gγ parents, with γ = 0.5

(ρ = −1, ρ̃ = −γ = −0.5, l = 1/γ = 2).
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Figure 2: Mean values (left) and mean squared errors (right) of H, M , ML, GH and MM estimators, for samples of

size n = 1000 from an extreme value Gγ model with γ = 0.5.

Note that for this model the left endpoint is −1/γ < 0, and consequently, the location

invariant versions in (1.7) perform much better than the MM estimator for small p.

Indeed, we find particularly interesting the consideration of the tuning parameter p, which

may help us on the choice of the “best” estimate, on the basis of any adequate stability

criterion. Note however that, as illustrated in Araújo Santos et al., 2006, a shift induced by

small values of p when the underlying model, unknown, has an infinite left endpoint, may lead

to stable sample paths around a target not close to the true value of γ. We illustrate such a

fact with an underlying standard normal model. Figure 3 is thus equivalent to the previous

figures, but for a standard normal underlying parent (γ = 0, ρ = ρ̃ = 0). As p decreases we get

stable sample paths, but not so close to the target value γ as the optimal estimate provided

via MM . Note that for p = 0.5 (a shift through the median), the MSE of MM(0.5) is, as
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expected due to the symmetry of the normal model, almost overlapping the MSE of the MM

estimator and quite interesting: smaller than the MSE of both the ML and the M estimators

for all k.
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Figure 3: Mean values (left) and mean squared errors (right) of H, M , IH, ML and MM estimators, for samples of

size n = 1000 from a standard normal model.

Finally, in Figure 4 we exhibit the behavior of the different estimators under consideration

for an extreme value model with γ = −0.1 (ρ = ρ̃ = −1). Note the fact that again as p

decreases we get sample paths closer and closer to the target value γ. Note also the fact that

despite the much larger bias of the mixed moment estimators, the statistic MM (0.01) clearly

overpasses all other estimators considered, regarding mean squared error.

-0.2

-0.1

0

0.1

0.2

0 100 200 300 400

0

0.02

0 100 200 300 400

! 

M

! 

M

! 

k

! 

k

! 

E[•]

! 

MSE[•]

! 

MM

! 

MM
(0.01)

! 

MM
(0.1)

! 

ML

! 

MM

! 

MM
(0.01)

! 

MM
(0.1)

! 

ML

! 

" = #0.1! 

GH

! 

GH

Figure 4: Mean values (left) and mean squared errors (right) of M , IH, ML and MM estimators, for samples of size

n = 1000 from an extreme value Gγ model with γ = −0.1.

For this range of γ values (negative and close to 0), the M estimator has a quite small bias

(look at the mean value pattern at Figure 5 (left)). But its variance is very very high and

regarding MSE’s, the MSE of M(k) is, for all k, higher than the ones of both ML(k) and

MM(p; k), provided that p is small.
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Finally, in Figures 5 and 6, we try making clear the situation in the region of heavy

tails mentioned in Remark 2.2, where the ML estimator should clearly outperform the MM

estimator. We have simulated a Burr(γ, ρ, λ) model, with d.f. F (x) = 1− (1 + (x−λ)−ρ)−γ/ρ,

x ≥ λ. We then have ρ̃ = ρ, l = λ, i.e., l 6= 0 if λ 6= 0. In Figures 5 and 6 we have chosen

(γ, ρ, λ) = (0.75,−2, 0) and (γ, ρ, λ) = (0.75,−2, 3), respectively.
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Figure 5: Mean values (left) and mean squared errors (right) of M , GH, ML and MM estimators, for samples of size

n = 1000 from a Burr model with γ = 0.75, ρ = −2 and location parameter λ = 0.
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Figure 6: Mean values (left) and mean squared errors (right) of M , GH, ML and MM estimators, for samples of size

n = 1000 from a Burr model with γ = 0.75, ρ = −2 and location parameter λ = 3.

We still make the following remark: even in the situations where, for heavy tails, the ML

estimator compares favourably with the MM estimator, a location invariant version MM(p),

associated, for instance, to the value p = 0.01, outperforms the ML for all models in this

region, with a finite left endpoint.

4 Auxiliary results

We state, without proof, the following lemma. For a proof, see de Haan and Ferreira (2006).
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Lemma 4.1. If (2.1) holds for some γ ∈ R, then the auxiliary function a(t) in (2.1) is of

regular variation at infinity with index γ, i.e., a ∈ RVγ and

lim
t→∞

a(t)
U(t)

= γ+ := max(0, γ).

Moreover, if γ > 0, both functions a and U belong to RVγ; if γ < 0, then xF := limt→∞ U(t)

exists, limt→∞ a(t)/(xF − U(t)) = −γ and xF − U ∈ RVγ.

Furthermore, with γ− := min(γ, 0), and provided that xF = U(∞) > 0,

lim
t→∞

lnU(tx)− lnU(t)
a(t)/U(t)

=
xγ− − 1

γ−
, for every x > 0. (4.1)

Lemma 4.1 above together with Drees inequality (Drees, 1998) and Proposition 1.7 in Geluk

and de Haan, 1987 yield the following uniform bounds:

Lemma 4.2. If (2.1) holds for some γ ∈ R then, for any ε > 0, there exists t0 = t0(ε) such

that for t ≥ t0 and x ≥ 1,∣∣∣∣U(tx)− U(t)
a(t)

− xγ − 1
γ

∣∣∣∣ ≤ ε xγ+ε, (1− ε) x−ε <
x

γ+
U(t)

U(tx)
< (1 + ε) xε

and ∣∣∣∣ lnU(tx)− lnU(t)
a(t)/U(t)

− xγ− − 1
γ−

∣∣∣∣ ≤ ε xγ−+ε.

In Fraga Alves et al. (2007), we find a proof of the following:

Proposition 4.1 (Fraga Alves et al., 2007). Let U ∈ 2ERV (γ, ρ) as introduced in (2.2). Let

c be the limit in (2.5).

(i) If γ > 0,

lim
t→∞

U(t)
U(tx) − x−γ

Ã(t)
= Kγ,ρ(x) :=

{
−x−γ xρ−1

ρ if c = γ
γ+ρ

−x−γ x−γ−1
−γ if c = ±∞

, (4.2)

and

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

Ã(t)
= K̃γ,ρ(x) :=

{
xρ−1

ρ if c = γ
γ+ρ

x−γ−1
−γ if c = ±∞

, (4.3)

for all x > 0, where, with A(t) given in (2.3),

Ã(t) :=

{
γ A(t)
γ+ρ if c = γ

γ+ρ

A(t) if c = ±∞
, (4.4)
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Necessarily,
∣∣∣Ã∣∣∣ ∈ RVeρ, with

ρ̃ =

{
ρ if c = γ

γ+ρ

−γ if c = ±∞
. (4.5)

(ii) If γ ≤ 0, we need further to assume that γ 6= ρ. Then,

lim
t→∞

U(t)
a∗(t)

(
1− U(t)

U(tx)

)
− xγ−1

γ

A∗(t)
= K∗γ, ρ(x) =


xγ lnx if γ < ρ = 0
xγ+ρ−1

γ+ρ if γ < ρ < 0
x2γ−1

2γ if ρ < γ < 0

ln2 x if ρ < γ = 0

, (4.6)

where

A∗(t) =



A(t)
γ if γ < ρ = 0

A(t)
ρ if γ < ρ < 0

−2 A(t)
γ if ρ < γ < 0

−A(t) if ρ < γ = 0

, (4.7)

and

a∗(t) =



a(t)
(
1− A(t)

γ

)
if γ < ρ = 0

a(t)
(
1− A(t)

ρ

)
if γ < ρ < 0

a(t)
(
1 + 2 A(t)

γ

)
if ρ < γ < 0

a(t) if ρ < γ = 0

. (4.8)

Necessarily, |A∗| ∈ RV
ρ∗ , with

ρ∗ =

{
ρ if γ < ρ ≤ 0

γ if ρ < γ ≤ 0
. (4.9)

We shall now provide in more detail the general behaviour of lnU(tx) − lnU(t) and

U(t)/U(tx) in the region where the limiting value c in (2.5) is ±∞, i.e., the region where A(t) =

o
(
A(t)

)
. Recall that such a region is {(γ, ρ) : ρ < γ ≤ 0 or γ = −ρ or (0 < γ < −ρ, l 6= 0)},

with l given in (2.4). The results in the following lemma come straightforwardly from Taylor’s

expansion.

Lemma 4.3. Assume that (2.2) holds. If ρ < γ ≤ 0, then

U(t)
U(tx)

= 1−A(t)
(

xγ−1
γ

)
+ A

2(t)
(

xγ−1
γ

)2
−A

3(t)
(

xγ−1
γ

)3
(1 + o(1))

− A(t) A(t)
ρ

(
xγ+ρ−1

γ+ρ − xγ−1
γ

)
(1 + o(1)). (4.10)
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If 0 < γ ≤ −ρ, since A may dominate A
2 as well as the other way round, we write

lnU(tx)− lnU(t) = γ lnx + A(t)
(

x−γ−1
−γ

)
+

γ A(t)
γ + ρ

(
xρ−1

ρ − x−γ−1
−γ

)
(1 + o(1))

− 1
2

A
2(t)

(
x−γ−1
−γ

)2
+ o

(
A

2(t)
)

(4.11)

and

U(t)
U(tx)

= x−γ

{
1−A(t)

(
x−γ−1
−γ

)
− γ A(t)

γ + ρ

(
xρ−1

ρ − x−γ−1
−γ

)
(1 + o(1))

+A
2(t)

(
x−γ−1
−γ

)2
+ o

(
A

2(t)
)}

. (4.12)

After the statements in Proposition 4.1, and again on the basis of Drees’ inequality (Drees,

1998), we may now state the following:

Lemma 4.4. If (2.2) holds for some γ > 0 then, for any ε > 0, there exists t0 = t0(ε) such

that for t ≥ t0 and x ≥ 1, ∣∣∣∣∣∣
U(t)
U(tx) − x−γ

Ã(t)
−Kγ,ρ(x)

∣∣∣∣∣∣ ≤ εx−γ+eρ+ε,

∣∣∣∣∣∣∣
(
1− U(t)

U(tx)

)2
− (1− x−γ) 2

Ã(t)
− 2(x−γ − 1)Kγ,ρ(x)

∣∣∣∣∣∣∣ ≤ εx−2γ+eρ+ε,

∣∣∣∣∣ lnU(tx)− lnU(t)− γ lnx

Ã(t)
− K̃γ,ρ(x)

∣∣∣∣∣ ≤ εxeρ+ε,

with A(t), Kγ,ρ(x), Ã(t), ρ̃ and K̃γ,ρ(x) given in (2.2), (4.2), (4.4), (4.5) and (4.3), respectively.

If (2.2) holds for some γ ≤ 0 then also, for any ε > 0, there exists t0 = t0(ε) such that for

t ≥ t0 and x ≥ 1, ∣∣∣∣∣∣
U(t)
a∗(t)

(
1− U(t)

U(tx)

)
− xγ−1

γ

A∗(t)
−K∗γ,ρ(x)

∣∣∣∣∣∣ ≤ ε xγ+ρ∗+ε

and ∣∣∣∣∣∣∣
(

U(t)
a∗(t)

(
1− U(t)

U(tx)

))2
−
(

xγ−1
γ

)2

A∗(t)
− 2

(
xγ − 1

γ

)
K∗γ,ρ(x)

∣∣∣∣∣∣∣ ≤ εx2γ+ρ∗+ε,

now with K∗γ,ρ∗(x), A∗(t), a∗(t) and ρ∗ given in (4.6), (4.7), (4.8) and (4.9), respectively.
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Here and throughout the paper, let {Yi,n}n
i=1 be the ascending order statistics associated

to the independent r.v.’s {Yi}n
i=1 with common standard Pareto d.f., 1−y−1, for all y ≥ 1. For

the proofs, bear in mind the equality in distribution

{Xi,n}n
i=1

d= {U (Yi,n)}n
i=1 .

Since k = kn is an intermediate sequence, Yn−k,n
a.s.−→

n→∞
∞, Rényi’s representation enables us

to write

Qi,n :=
Yn−i+1,n

Yn−k,n

d= Yk−i+1:k, 1 ≤ i ≤ k, (4.13)

and for any measurable function g,

1
k

k∑
i=1

g (Qi,n) d=
1
k

k∑
i=1

g(Yi). (4.14)

Proposition 4.2. Under the first order condition (2.1), for intermediate sequences k = kn,

with M
(j)
n (k) and L

(j)
n (k), j ≥ 1, given in (1.5), the following limits in probability hold:(

Xn−k,n

a(n/k)

)
M (1)

n (k) P−→
n→∞

1
1− γ−

,(
Xn−k,n

a(n/k)

)
L(1)

n (k) P−→
n→∞

1
1 + |γ|

,

(
Xn−k,n

a(n/k)

)2

L(1)
n (k) P−→

n→∞

γ−1
+

1 + |γ|
,(

Xn−k,n

a(n/k)

)2

L(2)
n (k) P−→

n→∞

2
(1 + |γ|)(1 + 2|γ|)

,(
Xn−k,n

a(n/k)

)3

L(3)
n (k) P−→

n→∞

6
(1 + |γ|)(1 + 2|γ|)(1 + 3|γ|)

,(
Xn−k,n

a(n/k)

)4

L(4)
n (k) P−→

n→∞

24
(1 + |γ|)(1 + 2|γ|)(1 + 3|γ|)(1 + 4|γ|)

.

Proof. First define

Lk,n :=
(

k

n

)
Yn−k,n.

Since k = kn is an intermediate sequence,

Lk,n
P−→

n→∞
1 (4.15)

(cf. e.g. Smirnov, 1952). If (2.1) holds, then, as stated in Lemma 4.1, a ∈ RVγ . It thus follows

from the uniform convergence theorem for regularly varying functions (see Geluk and de Haan,

1987, Theorem 1.3) that
a (Yn−k,n)

a
(

n
k

) =
a
(

n
k Lk,n

)
a
(

n
k

) P−→
n→∞

1. (4.16)
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Concerning M
(1)
n (k), we may write(

Xn−k,n

a(n/k)

)
M (1)

n (k) d=
a (Yn−k,n)
a(n/k)

1
k

k∑
i=1

lnU (Yn−i+1,n)− lnU (Yn−k,n)
a (Yn−k,n) /U (Yn−k,n)

and the core of this part of the proof lies at relation (4.1). Hence, using (4.13) and applying

the result in Lemma 4.2, related to lnU , we get

1
k

k∑
i=1

lnU (Yn−i+1,n)− lnU (Yn−k,n)
a (Yn−k,n) /U (Yn−k,n)

<
1
k

k∑
i=1

Q
γ−
i,n − 1
γ−

+
ε

k

k∑
i=1

Q
γ−+ε

i,n . (4.17)

Let us look at the right hand-side of (4.17): for an intermediate sequence k = kn, the law

of large numbers and (4.14) ensures that the first term converges in probability towards∫∞
1 y−2 (yγ− − 1) dy/γ− = (1 − γ−)−1, as n → ∞, while for any ε > 0, the second term

is such that
1
k

k∑
i=1

Q
γ−+ε

i,n
P−→

n→∞

∫ ∞
1

y−2 yγ−+ε dy < ∞.

A similar reasoning can be applied to the obvious lower bound that comes from Lemma 4.2,

and we get
1
k

k∑
i=1

lnU (Yn−i+1,n)− lnU (Yn−k,n)
a (Yn−k,n) /U (Yn−k,n)

P−→
n→∞

1
1− γ−

.

Hence, (4.16) and Slutsky’s theorem yield the result.

The moment statistics L
(j)
n (k), j = 1, 2, 3 are based on the random terms

Xn−k,n

a(n/k)

(
1− Xn−k,n

Xn−i+1,n

)
d=

a(Yn−k,n)
a(n/k)

U(Yn−i+1,n)−U(Yn−k,n)
a(Yn−k,n)

U(Yn−k,n)
U(Yn−i+1,n) ,

for i = 1, 2, · · · , k. Under condition (2.1), Lemma 4.2 guarantees that, for any ε > 0, and

sufficiently large n,

1
k

k∑
i=1

U (Yn−i+1,n)− U (Yn−k,n)
a (Yn−k,n)

U (Yn−k,n)
U (Yn−i+1,n)

<
1 + ε

k

k∑
i=1

(
Qγ

i.n − 1
γ

+ ε Qγ+ε
i,n

)
Q
−γ++ε

i,n .

The law of large numbers and (4.14) ensures that this upper bound is equal in distribution to

1 + ε

k

k∑
i=1

Y γ
i − 1
γ

Y
−γ++ε

i +
ε

k

k∑
i=1

Y
γ−+ε

i

and converges in probability towards

1 + ε

γ

∫ ∞
1

y−2
(
yγ−γ++ε − yγ+−ε

)
dy + ε

∫ ∞
1

y−2yγ−+ε dy.
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Since ε > 0 is arbitrary, Lebesgue’ s dominated convergence theorem may be applied to the

first integral with dominating function given by g(y) = ((1 + ε0)/γ)
(
yγ−+ε0 − y−(γ+−ε0)

)
, for

all y ≥ 1 and ε < ε0 < 1 + |γ|, integrable against dy/y2 and such that

lim
ε↓0

1 + ε

γ

∫ ∞
1

(
yγ−+ε0 − y−(γ+−ε0)

) dy

y2

=
1
γ

∫ ∞
1

(
yγ− − y−γ+

) dy

y2
=

1
(1− γ−)(1 + γ+)

=
1

1 + |γ|
.

The second integral is finite for any ε < 1 − γ− . Consequently, the second sum in the upper

bound is stochastically bounded. We can establish a similar asymptotic lower bound, and

apply a similar reasoning to that lower bound. From (4.16) we thus get(
Xn−k,n

a(n/k)

)
L(1)

n (k) P−→
n→∞

1
1 + |γ|

. (4.18)

Now, Lemma 4.1, jointly with (4.16), implies the convergence

Xn−k,n

a(n/k)
d=

a (Yn−k,n)
a(n/k)

U (Yn−k,n)
a (Yn−k,n)

P−→
n→∞

1
γ+

(4.19)

and (4.18) together with (4.19) imply that(
Xn−k,n

a(n/k)

)2

L(1)
n (k) P−→

n→∞

γ−1
+

1 + |γ|
.

The proofs of the other limiting results are similar and are therefore omitted.

Lemma 4.5. Let k = kn be an intermediate sequence. If the underlying quantile function U

satisfies (2.1) with γ ≤ 0, then, for any j ≥ m ≥ 1,(
U (Yn−k,n)

a(n/k)

)m 1
k

k∑
i=1

U (Yn−i+1,n)
U (Yn−k,n)

(
1−

U (Yn−k,n)
U (Yn−i+1,n)

)j

= Op

((
a(n/k)

U (Yn−k,n)

)j−m
)

.

Proof. Since U (Yn−k,n) ≤ U (Yn−i+1,n), for i = 1, 2, · · · , k, we may write

(
U (Yn−k,n)

a(n/k)

)m−j 1
k

k∑
i=1

(
U (Yn−k,n)

U (Yn−i+1,n)

)j−1(U (Yn−i+1,n)− U (Yn−k,n)
a (Yn−k,n)

)j

≤
(

U (Yn−k,n)
a(n/k)

)m−j
{

1
k

k∑
i=1

(
U (Yn−i+1,n)− U (Yn−k,n)

a (Yn−k,n)

)j
}

.

It follows from the first inequality of Lemma 4.2 that the second factor is Op(1).
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Remark 4.1. If we consider a∗(t) in (4.8), since a∗(t) ∼ a(t), as t → ∞, the results in

Proposition 4.2 and Lemma 4.5 obviously hold if we replace a(n/k) by a∗(n/k).

The two following lemmas follow immediately from the central limit theorem (cf. Billingsley,

1979, Theorem 29.5):

Lemma 4.6. For γ > 0,

√
k

(
1
k

k∑
i=1

lnYi − 1,
1
k

k∑
i=1

(
1− Y −γ

i

)
− γ

1 + γ
,

1
k

k∑
i=1

(
1− Y −γ

i

)2

2
− γ2

(1 + γ)(1 + 2γ)

 d−→
k→∞

(P0, P1, P2) ,

where (P0, P1, P2) has a joint normal distribution with mean zero and covariance matrix given

by
E
(
P 2

0

)
= 1, E (P0P1) = γ

(1+γ)2
, E (P0P2) = γ2(2+3γ)

(1+γ)2(1+2γ)2
,

E
(
P 2

1

)
= γ2

(1+γ)2(1+2γ)
, E (P1P2) = 2γ3

(1+γ)2(1+2γ)(1+3γ)

E
(
P 2

2

)
= γ4(5+11γ)

(1+γ)2(1+2γ)2(1+3γ)(1+4γ)

.

Lemma 4.7. For γ ≤ 0,

√
k

(
1
k

k∑
i=1

(
Y γ

i − 1
γ

)
− 1

1− γ
,
1
k

k∑
i=1

1
2

(
Y γ

i − 1
γ

)2

− 1
(1− γ)(1− 2γ)

)
d−→

k→∞
(P ∗1 , P ∗2 ) ,

where (P ∗1 , P ∗2 ) has a joint normal distribution with mean zero and covariance matrix given by

E
(
(P ∗1 )2

)
= 1

(1−γ)2(1−2γ)
, E

(
(P ∗2 )2

)
= 5−11γ

(1−γ)2(1−2γ)2(1−3γ)(1−4γ)
,

E (P ∗1 P ∗2 ) = 2
(1−γ)2(1−2γ)(1−3γ)

.

Again with Y a unit Pareto r.v, let us denote, for any α, β ≤ 0,

dα,β := E

(
Y α

(
Y β − 1

β

))
=

1
(1− α)(1− α− β)

. (4.20)

Proposition 4.3. Assume that the second order condition (2.2) holds with γ > 0. If k = kn

is an intermediate sequence, then, as n →∞,
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Xn−k,n

a(n/k)
=

1
γ

+
B√
k
− A(n/k)

γ2
(1 + op(1)) + op

(
Ã(n/k)

)
+ op

(
1/
√

k
)

,

M (1)
n (k) = γ +

γ P0√
k

+ dM1
Ã(n/k) + op

(
Ã(n/k)

)
+ op

(
1/
√

k
)

,

L(1)
n (k) =

γ

1 + γ
+

P1√
k

+ dL1
Ã(n/k) + op

(
Ã(n/k)

)
+ op

(
1/
√

k
)

,

{
L(1)

n (k)
}2

=
γ2

(1 + γ)2
+

2γ

1 + γ

P1(1 + op(1))√
k

+
2γ dL1

Ã(n/k)(1 + op(1))
1 + γ

,

L(2)
n (k) =

2 γ2

(1 + γ)(1 + 2γ)
+

2 P2(1 + op(1))√
k

+ dL2
Ã(n/k)(1 + op(1)),

where Ã(t) is given in (4.4) and B is a standard normal r.v. independent of (P0, P1, P2),

the normally distributed vector in Lemma 4.6. Moreover, with ρ̃ and dα,β given in (4.5) and

(4.20), respectively, we get

dM1
= d0,eρ =

1
1− ρ̃

, dL1
= d−γ,eρ =

1
(1 + γ)(1 + γ − ρ̃)

,

dL2
= 2

(
d−γ,eρ − d−2γ,eρ) =

2γ(2 + 3γ − ρ̃)
(1 + γ)(1 + 2γ)(1 + γ − ρ̃)(1 + 2γ − ρ̃)

.

Proof. Since (4.2) holds, (k Yn−k,n/n)γ = 1 + γ B/
√

k + op

(
Ã(n/k)

)
+ op

(
1/
√

k
)
, with

B a standard normal r.v. (see de Haan and Ferreira, 2006, Theorem 2.4.2) and Xn−k,n
d=

U (Yn−k,n), we may write, as n →∞,

Xn−k,n

a(n/k)
=

U(n/k)
a(n/k)

(
1 +

γ B√
k

+ op

(
Ã(n/k)

)
+ op

(
1/
√

k
))

.

Notice now that from (2.3), a(n/k)/U(n/k) = γ + A(n/k), and consequently,

U(n/k)
a(n/k)

=
1
γ

(
1− A(n/k)

γ
(1 + o(1))

)
.

Consequently,

Xn−k,n

a(n/k)
=

1
γ

+
B√
k
− A(n/k)

γ2
(1 + op(1)) + op

(
Ã(n/k)

)
+ op

(
1/
√

k
)

.

The use of (4.14) and (4.15), together with the inequalities in Lemma 4.4 for γ > 0, and the

notation Rk := 1
k

∑k
i=1 Y −γ+ρ̃+ε

i , leads us to

21



M (1)
n (k) = γ

k

k∑
i=1

lnYi + Ã
(

n
k

)(
1
k

k∑
i=1

K̃γ,ρ(Yi) + op(1)
k

k∑
i=1

Y eρ+ε
i

)
,

L(1)
n (k) = 1

k

k∑
i=1

(
1− Y −γ

i

)
− Ã

(
n
k

)(
1
k

k∑
i=1

Kγ,ρ(Yi) + op(Rk)

)

L(2)
n (k) = 1

k

k∑
i=1

(
1− Y −γ

i

)2
− Ã

(
n
k

)(
2
k

k∑
i=1

(
1− Y −γ

i

)
Kγ,ρ(Yi) + op(Rk)

)
,

with
(
L

(j)
n (k),M (j)

n (k)
)
, Kγ,ρ(x), Ã(t) and K̃γ,ρ(x) given in (1.5), (4.2), (4.4) and (4.3), re-

spectively. The law of large numbers implies that the partial sums associated with the op(1)

terms are negligible. Hence, all the results in the proposition follow straightforwardly.

Let us now define, with a∗(t) given in (4.8) for γ ≤ 0, a∗(t) = a(t) if γ > 0, and for

j ≥ m ≥ 1,

M∗
1 :=

(
Xn−k,n

a∗(n/k)

)
M (1)

n (k) P−→
n→∞

1
1− γ−

, (4.21)

L∗j :=
(

Xn−k,n

a∗(n/k)

)j
L(j)

n (k), (4.22)

R
(m,j)
k,n :=

(
U(Yn−k,n)

a∗(n/k)

)m 1
k

k∑
i=1

U(Yn−i+1,n)

U(Yn−k,n)

(
1− U(Yn−k,n)

U(Yn−i+1,n)

)j

. (4.23)

Proposition 4.4. Under the conditions in Proposition 4.1, for γ ≤ 0, with L∗j , j = 1, 2 given

in (4.22), and if k = kn is an intermediate sequence,

L∗1
d=

1
1− γ

+
(

P ∗1√
k

+ d∗
L1

A∗
(n

k

))
(1 + op(1)),

(L∗1)
2 d=

1
(1− γ)2

+
2

1− γ

(
P ∗1√

k
+ d∗

L1
A∗
(n

k

))
(1 + op(1)),

L∗2
d=

2
(1− γ)(1− 2γ)

+ 2
(

P ∗2√
k

+ d∗
L2

A∗
(n

k

))
(1 + op(1)),

as n → ∞, where (P ∗1 , P ∗2 ) is normally distributed with mean vector zero and covariance

matrix given in Lemma 4.7, and with ρ∗ and dα,β given in (4.9) and (4.20), respectively,

d∗
L1

=


dγ,0 = 1

(1−γ)2
if γ < ρ = 0

2 if ρ < γ = 0

d0,γ+ρ∗ = 1
1−γ−ρ∗ otherwise

, (4.24)

d∗
L2

=


d2γ,0−dγ,0

γ = 2−3γ
(1−γ)2(1−2γ)2

if γ < ρ = 0

6 if ρ < γ = 0
dγ,γ+ρ∗−d0,γ+ρ∗

γ = 2−2γ−ρ∗

(1−γ)(1−γ−ρ∗)(1−2γ−ρ∗) otherwise

. (4.25)
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Proof. The results in Lemma 4.4 for γ ≤ 0, with the notation Sk := 1
k

∑k
i=1 Qγ+ρ∗+ε

i,n , lead us

to the following distributional representations,

L∗1
d= 1

k

k∑
i=1

Qγ
i,n−1

γ + A∗ (Yn−k,n)

(
1
k

k∑
i=1

K∗γ,ρ (Qi,n) + op(Sk)

)
and

L∗2
d= 1

k

k∑
i=1

(
Qγ

i,n−1

γ

)2

+ A∗ (Yn−k,n)

(
2
k

k∑
i=1

(
Qγ

i,n−1

γ

)
K∗γ,ρ (Qi,n) + op(Sk)

)
,

with K∗γ,ρ(x) and A∗(t) given in (4.6) and (4.7), respectively. Since (4.15) holds for any

intermediate sequence k = kn, the use of (4.13) and (4.14), and now with the notation S∗k :=
1
k

∑k
i=1 Y γ+ρ∗+ε

i enables us to write:

L∗1
d= 1

k

k∑
i=1

Y γ
i −1
γ + A∗

(n

k

)(
1
k

k∑
i=1

K∗γ,ρ (Yi) + op(S∗k)

)

L∗2
d= 1

k

k∑
i=1

(
Y γ

i −1
γ

)2
+ A∗

(
n
k

)(
1
k

k∑
i=1

2
(

Y γ
i − 1
γ

)
K∗γ,ρ (Yi) + op(S∗k)

)
.

The random term associated to op(1) is stochastically bounded. Indeed the integral appearing

in the limit of that term is finite for any ε < 1−γ−ρ∗. The law of large numbers ensures then

that d∗
L1

= E
(
K∗γ,ρ(Y )

)
and d∗

L2
= E

((
Y γ−1

γ

)
K∗γ,ρ(Y )

)
. Taking P ∗1 and P ∗2 as the normal

limiting r.v.’s of Lemma 4.7 and noticing that

(L∗1)
2 − 1

(1− γ)2
=
(

L∗1 −
1

1− γ

)(
L∗1 +

1
1− γ

)
=

2
1− γ

(
L∗1 −

1
1− γ

)
(1 + op(1)),

we bring the proof to an end.

5 Proof of the main results

Proof. [Theorem 2.1]. The proof of Theorem 2.1 relies essentially on the results in Proposition

4.2. Again with a∗(t) given in (4.8) for γ ≤ 0, a∗(t) = a(t) if γ > 0, note first that the estimator

in (1.4) can be written as

ϕ̂n(k) =

(
Xn−k,n

a∗(n/k)

)
M

(1)
n (k)−

(
Xn−k,n

a∗(n/k)

)
L

(1)
n (k)(

Xn−k,n

a∗(n/k)

)(
L

(1)
n (k)

)2 =
M∗

1 − L∗1
(a∗(n/k)/Xn−k,n) (L∗1)

2 .

We shall now consider the cases γ > 0 and γ ≤ 0 separately. If γ > 0, the use of Proposition

4.2, together with Slutsky’s argument, leads us to:

ϕ̂n(k) P−→
n→∞

1− (1 + γ)−1

γ(1 + γ)−2
= 1 + γ.
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If γ ≤ 0,

M (1)
n (k)− L(1)

n (k) d=
1
k

k∑
i=1

{
ln

U (Yn−i+1,n)
U (Yn−k,n)

−
(

1−
U (Yn−k,n)

U (Yn−i+1,n)

)}

=
1
k

k∑
i=1

{
− ln

(
1−

(
1−

U (Yn−k,n)
U (Yn−i+1,n)

))
−
(

1−
U (Yn−k,n)

U (Yn−i+1,n)

)}
(5.1)

Note now that for 0 < x < 1,

0 < − ln(1− x)− x− x2

2
<

x3

3(1− x)

and use it to deal with (5.1), after assigning x := 1− U(Yn−k,n)
U(Yn−i+1,n) . Then, with M∗

1 and L∗j , j =

1, 2 given in (4.21) and (4.22), respectively, we get, with R
(m,j)
k.n defined in (4.23),

L∗2
2

<
U (Yn−k,n)
a∗(n/k)

(M∗
1 − L∗1) <

L∗2
2

+
R

(2,3)
k,n

3
.

Then, since a∗ (n/k) /U (Yn−k,n) P−→
n→∞

0, R
(2,3)
k,n = Op (a∗ (n/k) /U (Yn−k,n)) = op(1).

From (4.22) and Proposition 4.2 we know that (L∗1)
2 P−→

n→∞
1/(1 − γ)2 and

L∗2/2 P−→
n→∞

1/ ((1− γ)(1− 2γ)). Therefore, Slutsky’s theorem leads us to the desired result,

i.e.,

ϕ̂n(k) =
Xn−k,n

a∗(n/k)
M∗

1 − L∗1
(L∗1)

2

d=
L∗2

2 (L∗1)
2

P−→
n→∞

1− γ

1− 2γ
, γ ≤ 0. (5.2)

Proof. [Corollary 2.1]. Theorem 2.1 ensures the consistency of ϕ̂n(k) as an estimator of the

strictly increasing function ϕ(γ), in (1.3). Hence, by simple inversion and a Slutsky’s argument,

we get the consistency of γ̂MM
n (k), in (1.6), for any real γ.

Proof. [Theorem 2.2]. Let us consider first the case γ > 0. Due to the definition of ϕ̂n(k) in
(1.4) and given the limits in probability provided in Proposition 4.2, we write

√
k {ϕ̂n(k)− (1 + γ)} =

√
k

M
(1)
n (k)− L

(1)
n (k)− (1 + γ)

(
L

(1)
n (k)

)2

(
L

(1)
n (k)

)2

=
(

1 + γ

γ

)2 [√
k
(
M (1)

n (k)− γ
)
−
√

k

(
L(1)

n (k)− γ

1 + γ

)
−(1 + γ)

√
k

((
L(1)

n (k)
)2

−
(

γ

1 + γ

)2
)]

(1 + op(1)).
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Now, the results in Proposition 4.3 enable us to write

√
k {ϕ̂n(k)− (1 + γ)} =

(
1 + γ

γ

)2

[(γ P0 − (1 + 2γ)P1)

+
√

k Ã
(n

k

)(
dM1

− (1 + 2γ)dL1

)]
+ op

(√
k Ã

(n

k

))
+ op(1),

and, on the basis of Lemma 4.6, we easily get an asymptotic variance equal to (1 + γ)2.

If c = γ/(γ + ρ), ρ̃ = ρ, Ã(n/k) = γ A(n/k)/(γ + ρ). We then get

√
k {ϕ̂n(k)− (1 + γ)} =

(
1 + γ

γ

)2

[(γ P0 − (1 + 2γ)P1)

+

√
k A

(
n
k

)
γ2

(1− ρ)(1 + γ)(1 + γ − ρ)

]
+ op

(√
k A

(n

k

))
+ op(1),

and the asymptotic bias provided for the region where c = γ/(γ + ρ) follows.

If c = ±∞, ρ̃ = −γ, Ã(t) = A(t) and dM1
− (1 + 2γ)dL1

≡ 0. Consequently, the asymptotic

bias of
√

k {ϕ̂n(k)− (1 + γ)} is null provided we consider levels such that
√

k A(n/k) → λ,

finite, as n →∞.

If γ ≤ 0, we use the distributional representation in (5.2). Similarly to the proof of Theorem

2.1, if we now use the inequalities, 0 < − ln(1−x)−x−x2/2−x3/3 < x4/(4(1−x)), 0 < x < 1,

for x = 1− U (Yn−k,n) /U (Yn−i+1,n), we get

L∗2
2

+
a∗ (n/k)

U (Yn−k,n)
L∗3
3

<
U (Yn−k,n)
a∗(n/k)

(M∗
1 − L∗1) <

L∗2
2

+
a∗ (n/k)

U (Yn−k,n)
L∗3
3

+
R

(2,4)
k,n

4
,

with R
(m,j)
k,n in (4.23). Due to the limits in probability provided in Proposition 4.2, if we consider

levels k such that
√

k A(n/k) → λ, finite, and with A given in (2.3),

√
k A(n/k)

L∗3
3

P−→
n→∞

2λ

(1− γ)(1− 2γ)(1− 3γ)
.

The same condition and Lemma 4.5 imply
√

k R
(2,4)
k,n

P−→
n→∞

0. From Proposition 4.4 we get the

asymptotic normality of L∗2 and (L∗1)
2 and we easily derive

√
k (ϕ̂n(k)− ϕ(γ)) d= (1− γ)2(1 + op(1))

(√
k

(
L∗2
2
− 1

(1− γ)(1− 2γ)

)
− 1− γ

1− 2γ

√
k

(
(L∗1)

2 − 1
(1− γ)2

)
+
√

k A(n/k)
L∗3
3

)
+ op(1),
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which finally leads to

√
k (ϕ̂n(k)− ϕ(γ)) d= (1− γ)2

(
P ∗2 −

2 P ∗1
1− 2γ

)
+
√

k A∗(n/k)(1− γ)2
(

d∗
L2
−

2 d∗
L1

1− 2γ

)
(1 + op(1))

+
√

k A(n/k)
2(1− γ)

(1− 2γ)(1− 3γ)
(1 + op(1)) + op(1).

Lemma 4.7 leads then to the asymptotic variance in the theorem. From (4.24) and (4.25), we

get

(1− γ)2
(

d∗
L2
−

2 d∗
L1

1− 2γ

)
=



ρ(1−γ)
(1−2γ)(1−γ−ρ)(1−2γ−ρ) if γ < ρ < 0

γ(1−γ)
(1−2γ)2(1−3γ)

if ρ < γ < 0
γ

(1−2γ)2
if γ < ρ = 0

2 if ρ < γ = 0

.

From Proposition 4.1, and from the fact that c = 0 in the region γ < ρ ≤ 0 (see (2.5)), we get

lim
t→∞

A(t)
A∗(t)

=


0 if γ < ρ ≤ 0

−γ
2 if ρ < γ < 0

−1 if ρ < γ = 0

.

This finally enables us to get, for the asymptotic bias, the value λbϕ in the theorem, equal to

0 whenever ρ < γ = 0.

Proof. [Corollary 2.2]. Under the conditions of Theorem 2.2, ϕ̂n(k) is a consistent estimator

of ϕ(γ). The extreme value index is given by the inverse function ϕ−1, independent of the

sample size n, with positive and continuous derivative everywhere. In fact d
dx ϕ−1(x) = 1 if

x > 0 and d
dx ϕ−1(x) = (1 − 2x)−2, otherwise. Hence, Cramér’s delta-method yields that the

Mixed Moment estimator in (1.6) satisfies

√
k
(
γ̂MM

n (k)− γ
) d−→

n→∞

{
P if γ > 0

(1− 2γ)2P if γ ≤ 0
,

where P stands for the normal limiting r.v. of
√

k (ϕ̂n(k)− ϕ(γ)).

Proof. [Theorem 2.3]. In order to get a possibly non-null asymptotic bias for the case γ > 0,

c = ±∞, it is imperative to consider the terms provided in the expansions (4.11) and (4.12).

From (4.11), and again with dα,β given in (4.20), we get
√

k
(
M (1)

n (k)− γ
)

d= γ P0 +
√

k A
(n

k

)
d0,−γ

+
√

k

(
γ (d0,ρ − d0,−γ) A(n/k)

γ + ρ
+ A

2
(n

k

) d0,−2γ − d0,−γ

γ

)
(1 + op(1)). (5.3)
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From (4.12), we get

√
k

(
L(1)

n (k)− γ

1 + γ

)
d= P1 +

√
k A

(n

k

)
d−γ,−γ

+
√

k

(
γ (d−γ,ρ − d−γ,−γ) A(n/k)

γ + ρ
+ A

2
(n

k

) 2 (d−γ,−2γ − d−γ,−γ)
γ

)
(1 + op(1)), (5.4)

and consequently,

√
k

((
L(1)

n (k)
)2
− γ2

(1 + γ)2

)
d=

2γ P1

1 + γ
+

2γ d−γ,−γ

1 + γ

√
k A

(n

k

)
+

2γ2
√

k A(n/k)
(1 + γ)(γ + ρ)

(d−γ,ρ − d−γ,−γ) (1 + op(1))

+
√

k A
2
(n

k

)(4 (d−γ,−2γ − d−γ,−γ)
1 + γ

+ d2
−γ,−γ

)
(1 + op(1)). (5.5)

Since |A| ∈ RVρ and A
2 ∈ RV−2γ , A dominates A

2 if γ > −ρ/2, but A
2 dominates A if

γ ≤ −ρ/2. In the region −ρ/2 < γ ≤ −ρ, l 6= 0, with l in (2.4), we may still report the

asymptotic bias of
√

k {ϕ̂n(k)− (1 + γ)} to the function A. Whenever
√

k A(n/k) → λ, the A

term vanishes, i.e.,
√

k A(n/k) → 0, and we get the bias λb0, with

b0 =
(

1+γ
γ

)2 (
γ

γ+ρ

)
[(d0,ρ − (1 + 2γ)d−γ,ρ)− (d0,−γ − (1 + 2γ)d−γ,−γ)]

=
(

1+γ
γ

)2 (
γ

γ+ρ

)
(d0,ρ − (1 + 2γ)d−γ,ρ) =

1 + γ

(1− ρ)(1 + γ − ρ)
≡ bϕ,

the same value we got for the region where c = γ/(γ + ρ).

If we are working with a model such that 0 < γ < −ρ/2, l 6= 0, A
2 dominates A and a

non-null bias is related to levels k such that
√

k A
2(n/k) → λ. The asymptotic bias is then

related to the scale factor associated to
√

k A
2 (n/k) in the distributional representation of

√
k (ϕ̂n(k)− ϕ(γ)). Such a factor comes directly from the distributional representations in

(5.3), (5.4) and (5.5), and, up to the scale factor
(

1+γ
γ

)2
, is given by

d0,−2γ − d0,−γ

γ
− 2 (d−γ,−2γ − d−γ,−γ)

γ
− 4 (d−γ,−2γ − d−γ,−γ)− (1 + γ)d2

−γ,−γ

=
1
γ

(
d0,−2γ + (1 + 2γ)d−γ,−γ − 2(1 + 2γ)d−γ,−2γ − γ(1 + γ)d2

−γ,−γ

)
=

2γ2(1 + γ)
(1 + γ)2(1 + 2γ)2(1 + 3γ)

.

Hence the result.

If ρ < γ = 0, A(t) = o
(
A

2(t)
)

and we get, from (4.10),

U(t)
a(t)

(
1− U(t)

U(tx)

)
= ln x−A(t) ln2 x + A

2(t) ln3 x(1 + o(1)).
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Again in the lines of the proofs of Theorems 2.1 and 2.2, we need now to use the in-

equalities, 0 < − ln(1 − x) − x − x2/2 − x3/3 − x4/4 < x5/(5(1 − x)), 0 < x < 1, for

x = 1− U (Yn−k,n) /U (Yn−i+1,n), and we get

L∗2
2

+
a∗ (n/k)

U (Yn−k,n)
L∗3
3

+
(

a∗ (n/k)
U (Yn−k,n)

)2 L∗4
4

<
U (Yn−k,n)
a∗(n/k)

(M∗
1 − L∗1)

<
L∗2
2

+
a∗ (n/k)

U (Yn−k,n)
L∗3
3

+
(

a∗ (n/k)
U (Yn−k,n)

)2 L∗4
4

+
R

(2,5)
k,n

5
,

again with R
(m,j)
k,n in (4.23). Due to the limit in probability provided in Proposition 4.2 and

related to L∗4, if we consider levels k such that
√

k A
2(n/k) → λ, finite, and with A given in

(2.3),
√

k A
2(n/k)

L∗4
4

P−→
n→∞

6λ

(1− γ)(1− 2γ)(1− 3γ)
= 6 λ.

The same condition and Lemma 4.5 imply
√

k R
(2,5)
k,n

P−→
n→∞

0. The contributions to the asymp-

totic bias provided by L∗2/2, (L∗1)
2, L∗3/3 and L∗4/4 are then given by 36 A

2, −16 A
2, −24 A

2

and 6 A
2, respectively. Hence, the limiting value 2λ, whenever

√
k A

2(n/k) → λ, finite, as

n →∞.

Remark 5.1. The case γ = −ρ/2 has been excluded: then everything depends on the relative

behaviour of A and A
2, both regularly varying with the same index of regular variation ρ.

Proof. [Theorem 2.4]. We are going to show that the normalized mixed moment estimator

can be approximated by functionals of a sequence of Brownian motions. Then we show that

for γ ≥ 0 these functionals are the same as for the maximum likelihood estimator and for γ ≤ 0

they are the same as for the moment estimator. Note first that, with {Wn(s)}s≥0 denoting a

sequence of Brownian motions, Lemma 2.4.10 of de Haan and Ferreira, 2006 gives for γ 6= 0,

and as n →∞, (
k

n
Yn−k,n

)γ

= 1 +
γ√
k

(Wn(1) + op(1)) .

The same lemma ibidem implies for 0 < s ≤ 1,(
k

n
Yn−[ks],n

)γ

= s−γ

(
1 +

γ√
k

s−1Wn(s)
)

+
op(1)√

k
max

(
1, s−γ−1

2−ε

)
,

where the op-term is uniform in s. Defining Qn(s) := Yn−[ks],n/Yn−k,n, it follows that, for any

ε > 0,

Qγ
n(s) =

(
Yn−[ks],n

Yn−k,n

)γ

= s−γ

(
1 +

γ√
k

(
s−1Wn(s)−Wn(1)

))
+

op(1)√
k

max
(

1, s−γ−1
2−ε

)
. (5.6)
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Similarly, we get

lnQn(s) = − ln s +
1√
k

(
s−1Wn(s)−Wn(1)

)
+

op(1)√
k

max
(

1, s−
1
2−ε

)
. (5.7)

For γ > 0, we get from Proposition 4.1 (i) (in connection with Lemma 4.4) and the substitution

explained just before Proposition 4.2,

√
k
(
M (1)

n (k)− γ
)

= γ
√

k

(∫ 1

0
lnQn(s)ds− 1

)
+ op(1),

√
k

(
L(1)

n (k)− γ

1 + γ

)
= γ

√
k

(∫ 1

0

(
1−Q−γ

n (s)
)
ds− 1

1 + γ

)
+ op(1).

Then, by (5.6) and (5.7),

√
k
(
M (1)

n (k)− γ
)

= γ

∫ 1

0

(
s−1Wn(s)−Wn(1)

)
ds + op(1),

√
k

(
L(1)

n (k)− γ

1 + γ

)
= γ

∫ 1

0
sγ
(
s−1Wn(s)−Wn(1)

)
ds + op(1).

Now, using Cramer’s delta method as in the previous proof, we obtain under the conditions of

the theorem

√
k
(
γ̂MM

n (k)− γ
)

=
(1 + γ)2

γ

∫ 1

0

(
s−1 − (1 + 2γ)sγ−1

)
Wn(s)ds

+ (1 + γ)Wn(1) + op(1), (5.8)

and both the functional of the Brownian motion and the bias are the same as the ones got for

γ̂ML
n in Theorem 2.1 of Drees et al., 2004, page 1183. Hence the result for γ > 0.

If γ = 0, (5.8) becomes

√
k γ̂MM

n (k) =
∫ 1

0
(2 + ln s) s−1Wn(s)ds−Wn(1) + op(1),

again the same approximation as for γ̂ML
n . The latter, combined with Theorem 2.2 of Drees

et al., 2004 ascertains the full result with respect to γ = 0.

Finally, if γ < 0, we get for each j = 1, 2,

√
k

(
L∗j −

j(
1− jγ

)(
1− (j − 1)γ

)) =
√

k

(∫ 1

0

(Qγ
n(s)− 1

γ

)j
ds−

∫ 1

0

(s−γ − 1
γ

)j
ds

)
+op(1).
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Defining,

P̃j := j

∫ 1

0

(s−γ − 1
γ

)j−1(
s−γ−1Wn(s)−Wn(1)

)
ds, j = 1, 2 (5.9)

and using (5.6), we obtain that

√
k

(
L∗j −

j(
1− jγ

)(
1− (j − 1)γ

))− P̃j
P−→

n→∞
0.

Note that (P̃1, P̃2) is equal in distribution to the limit random vector (P,Q) from Lemma 3.5.5

of de Haan and Ferreira, 2006. Now, as shown in the proof of Theorem 2.2 and Corollary 2.2,

√
k

(
γ̂MM

n (k)−
L∗2
2 − (L∗1)

2

L∗2 − (L∗1)
2

)
p−→

n→∞
0.

Note also that
L∗2
2 − (L∗1)

2

L∗2 − (L∗1)
2 = 1− 1

2

(
1− (L∗1)

2

L∗2

)−1

,

which is the same formula as in Corollary 3.5.6 of de Haan and Ferreira, 2006. Hence, the

(asymptotic) correlation coefficient between γ̂MM
n (k) and γ̂M

n (k) is equal to 1.

The second part of the Theorem, namely checking asymptotic bias, is left to the reader since

it follows straightforwardly by taking into account the relation among the the second order

auxiliary functions A, Ã and Ã2 and the terms depending on γ and ρ that trail along with.

Proof. [Theorem 2.5]. We first prove that the estimator γ̂MM
n (k; p) has exactly the same

asymptotic behavior as ̂̂γMM

n (k; p), defined as γ̂MM
n (k) in (1.6), but with Xn−i+1,n replaced

everywhere by Xn−i+1,n − Q(p), 1 ≤ i ≤ n, with Q the inverse of the d.f. F . In fact this

statement is true for all the statistics in (1.5). We shall prove it for M
(1)
n (k). For i = 1, 2, · · · , k,

ln
(
Xn−i+1,n −X[np]+1:n

)
= ln (Xn−i+1,n −Q(p)) + ln

(
1− X[np]+1,n−Q(p)

Xn−i+1,n−Q(p)

)
.

The last term is at most

ln
(

1−
X[np]+1,n −Q(p)

Xn,n −Q(p)

)
.

Since X[np]+1,n −Q(p) = Op

(
n−1/2

)
and Xn,n −Q(p) P−→

n→∞
Q(1)−Q(p) ∈ (0,∞], we have

√
k ln

(
1−

X[np]+1,n −Q(p)
Xn,n −Q(p)

)
= (1 + op(1))

√
k

n

√
n
(
X[np]+1,n −Q(p)

)
Q(1)−Q(p)

=

√
k

n
Op(1) P−→

n→∞
0.
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Similarly for L
(1)
n (k), L

(2)
n (k) and thus for γ̂MM

n (k). Now, ̂̂γMM

n (k; p) differs from γ̂MM
n (k) only

by a shift: we replace U(t) by Ũ(t) := U(t)−U
(
(1− p)−1

)
. Hence condition (2.2) is valid for

Ũ and Theorems 2.1 and 2.2 are valid for the adjusted estimators albeit that, for ρ < γ < 0,

the bias term has to be multiplied by xF /
(
xF − U (1/(1− p))

)
.

Proof. [Theorem 2.6]. The proof of (2.12) follows immediatelly from Proposition 4.2 and

Slutsky’s theorem. The asymptotic normality result is based on the distributional representa-

tions provided in Propositions 4.3 and 4.4. We shall here consider again separately the cases

γ > 0 and γ ≤ 0.

If γ > 0, we may write

â(n/k)
a(n/k)

− 1 =

Xn−k,n

a(n/k)
L

(1)
n (k) L

(2)
n (k)

2 −
(

L
(2)
n (k)−

(
L

(1)
n (k)

)2
)

L
(2)
n (k)−

(
L

(1)
n (k)

)2 .

Proposition 4.3, enables us to write,

Xn−k,n

a(n/k)

(
L

(1)
n (k) L

(2)
n (k)

2

)
=

γ2

(1 + γ)2(1 + 2γ)
+

γ3 B

(1 + γ)2(1 + 2γ)
√

k
+

γ P1

(1 + γ)(1 + 2γ)
√

k

+
P2

(1 + γ)
√

k
+op

(
1√
k

)
+

Ã(n/k)
1 + γ

(
dL2

+
γ dL1

1 + 2γ

)
(1+op(1))− γ A(n/k)

(1 + γ)2(1 + 2γ)
(1+op(1)),

and

L(2)
n (k)−

(
L(1)

n (k)
)2

=
γ2

(1 + γ)2(1 + 2γ)
− 2γ P1

(1 + γ)
√

k
+

2 P2√
k

+ op

(
1√
k

)
+ 2Ã(n/k)

(
dL2

−
γ dL1

1 + γ

)
(1 + op(1)).

Hence,

√
k

(
â(n/k)
a(n/k)

− 1
)

= (1+γ)(3+4γ)P1

γ − (1+γ)(1+2γ)2P2

γ2 + γ B + op(1))

+
√

k

(
Ã(n/k)

(
(1+γ)(3+4γ) d

L1
γ −

(1+γ)(1+2γ)2 d
L2

γ2

)
− A(n/k)

γ

)
(1 + op(1)).

The asymptotic bias follows then from the results in Proposition 4.3 and the asymptotic vari-

ance can be calculated on the basis of Lemma 4.6.

If γ ≤ 0, and on the basis of the results in Proposition 4.2, we may write

â(n/k) = a∗(n/k)
L∗1 L∗2/2

L∗2 − (L∗1)
2 = a(n/k)

a∗(n/k)
a(n/k)

L∗1 L∗2/2
L∗2 − (L∗1)

2 ,
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and consequently,

√
k

(
â(n/k)
a(n/k)

− 1
)

d=
√

k


(

a∗(n/k)
a(n/k)

)
L∗1 L∗2

2 − L∗2 + (L∗1)
2

L∗2 − (L∗1)
2


with a∗(t) given in (4.8), i.e., with

a∗(t)
a(t)

=

{
1−A∗(t) if γ < 0, ρ ≤ 0

1 if ρ < γ = 0

Proposition 4.4 ensures that

L∗1 L∗2
2

= 1
(1−γ)2(1−2γ)

+ P ∗1
(1−γ)(1−2γ)

√
k

+ P ∗2
(1−γ)

√
k

+ op

(
1√
k

)
+ A∗(n/k)

(
d∗

L1
(1−γ)(1−2γ) +

d∗
L2

1−γ

)
(1 + op(1)). (5.10)

Consequently, in the region γ < 0, ρ ≤ 0,

a∗(n/k)
a(n/k)

L∗1 L∗2
2

= 1
(1−γ)2(1−2γ)

+ P ∗1
(1−γ)(1−2γ)

√
k

+ P ∗2
(1−γ)

√
k

+ op

(
1√
k

)
+ A∗(n/k)

(
d∗

L1
(1−γ)(1−2γ) +

d∗
L2

1−γ −
1

(1−γ)2(1−2γ)

)
(1 + op(1)).

Since

L∗2 − (L∗1)
2 =

1
(1− γ)2(1− 2γ)

− 2 P ∗1
(1− γ)

√
k

+
2 P ∗2√

k
+ op

(
1√
k

)
+ 2A∗(n/k)

(
d∗

L2
−

d∗
L1

1− γ

)
(1 + op(1)), (5.11)

a∗(n/k)
a(n/k)

L∗1 L∗2
2

− L∗2 + (L∗1)
2 =

(3− 4γ)P ∗1
(1− γ)(1− 2γ)

√
k
− (1− 2γ)P ∗2

(1− γ)
√

k
+ op

(
1√
k

)
+ A∗(n/k)

(
(3− 4γ) d∗

L1

(1− γ)(1− 2γ)
−

(1− 2γ) d∗
L2

1− γ
− 1

(1− γ)2(1− 2γ)

)
(1 + op(1)).

We thus get

√
k

(
â(n/k)
a(n/k)

− 1
)

= (1− γ)(3− 4γ) P ∗1 − (1− γ)(1− 2γ)2 P ∗2 + op(1)

+
√

k A∗(n/k)
(
(1− γ)(3− 4γ)d∗

L1
− (1− γ)(1− 2γ)2 d∗

L2
− 1
)

(1 + op(1)),
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where the normal r.v.’s (P ∗1 , P ∗2 ) and the constants d∗
L1

and dL2
are defined in Lemma 4.7, (4.24)

and (4.25), respectively. The asymptotic bias and variance are then obtained by straightforward

calculations. In the region ρ < γ = 0, directly from (5.10) and (5.11), we get

L∗1 L∗2
2

− L∗2 + (L∗1)
2 =

(
3 P ∗1√

k
− P ∗2√

k
+ A∗(n/k)

(
3 d∗

L1
− d∗

L2

))
(1 + op(1))

and, 3 d∗
L1
− d∗

L2
≡ 0. Hence the null asymptotic bias associated to levels k such that

√
k A(n/k) → λ, finite, as n →∞.

Proof. [Theorem 2.7]. We only need to take into account the following expansion, obtained

under the second order condition (2.2):

Xn−k,n − U(n/k)
a(n/k)

d=
U (Yn−k,n)− U(n/k)

a(n/k)

=

(
k Yn−k,n

n

)γ
− 1

γ
+ A(n/k)

(
Hγ,ρ

(
k Yn−k,n

n

)
+ op(1)

)
=

B√
k

+ op

(
1√
k

)
+ op (A(n/k)) ,

as n → ∞, where B is the standard normal r.v. in Proposition 4.3. The result comes from

Theorems 2.2 and 2.6, after straightforward calculations.
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