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Abstract

The Lehmer mean of order p of k positive numbers (a1, . . . , ak) is defined by∑k
i=1 a

p
i /
∑k

i=1 a
p−1
i , generalizing both the arithmetic mean (p = 1) and the harmonic mean

(p = 0). Given a random sample (X1, . . . , Xn) and the associated sample of ascending order

statistics (X1:n ≤ · · · ≤ Xn:n), the classical Hill estimator of a positive extreme value index

(EVI), the primary parameter of extreme events, can thus be considered as the Lehmer

mean of order 1 of the k log-excesses Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n. We

now more generally consider the Lehmer mean of order p of the log-excesses and an asso-

ciated Lehmer EVI-estimator. Apart from the derivation of the asymptotic behaviour of
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this class of EVI-estimators, an asymptotic comparison, at optimal levels, of the members

of such a class reveals that for the optimal p they are able to overall outperform a recent

and promising generalization of the Hill EVI-estimator. A large-scale Monte-Carlo simula-

tion study is developed, giving emphasis to the discrepancies between asymptotic and finite

sample behaviour of the estimators. A bootstrap algorithm for an adaptive estimation of

the tuning parameters under play is also put forward.

Keywords and phrases. Bootstrap methodology; Heavy tails; Monte-Carlo simulation;

Optimal levels; Semi-parametric estimation; Statistics of extremes.

1 The new class of estimators and scope of the article

On the basis of a sample of size n of independent, identically distributed random variables (RVs),

X1, . . . , Xn, from a cumulative distribution function (CDF) F , let us consider the notation,

X1:n ≤ · · · ≤ Xn:n, for the associated ascending order statistics (OSs). As usual in a framework

of statistical extreme value theory (EVT) let us assume that there exist sequences of real con-

stants {an > 0} and {bn ∈ R} such that the maximum, linearly normalised, i.e. (Xn:n − bn) /an,

converges in distribution to a non-degenerate RV. Then, the limit distribution is necessarily of

the type of the general extreme value (EV) CDF, given by

EVξ(x) =

 exp(−(1 + ξx)−1/ξ), 1 + ξx > 0, if ξ 6= 0

exp(− exp(−x)), x ∈ R, if ξ = 0.
(1.1)

The CDF F is said to belong to the max-domain of attraction of EVξ, we use the notation

F ∈ DM (EVξ), and the parameter ξ is the extreme value index (EVI), the primary parameter of

extreme events.

Let us denote by Ra the class of regularly varying functions at infinity, with an index of

regular variation equal to a ∈ R, i.e. positive measurable functions g(·) such that for all x > 0,

g(tx)/g(t) → xa, as t → ∞ (see Seneta, 1976, and Bingham et al., 1987, among others). For

weakly dependent and stationary sequences from F (·), the EVI measures the heaviness of the

right-tail function

F (x) := 1− F (x), (1.2)
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and the heavier the right tail, the larger ξ is.

In this article we work with Pareto-type underlying CDFs, with a positive EVI, or equiva-

lently, models such that F (x) = x−1/ξL(x), ξ > 0, with L ∈ R0, a slowly varying function at

infinity, i.e. a regularly varying function with an index of regular variation equal to zero. These

heavy-tailed models are quite common in a large variety of fields of application, like bibliomet-

rics, biostatistics, computer science, insurance, finance, social sciences and telecommunications,

among others.

For Pareto-type models, the classical EVI-estimators are the Hill (H) estimators (Hill, 1975),

which are the averages of the log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n. (1.3)

We thus have

ξ̂H(k) ≡ H(k) :=
1

k

k∑
i=1

Vik, 1 ≤ k < n. (1.4)

One of the interesting facts concerning the H EVI-estimator is that various asymptotically equiv-

alent versions of H(k) can be derived through essentially different methods, such as the maximum

likelihood (ML) method or the mean excess function approach, showing that the Hill estimator is

very natural. Details can be found in Beirlant et al. (2004), among others. We merely note that

from a quantile point of view, i.e. with F←(x) := inf{y : F (y) ≥ x} denoting the generalised

inverse function of F , and

U(t) := F←(1− 1/t), t ≥ 1, (1.5)

the reciprocal tail quantile function, we can write the distributional identity X
d
= U(Y ), with Y

a unit Pareto RV, i.e. a RV with a CDF F
Y

(y) = 1− 1/y, y ≥ 1. For the OSs associated with a

random unit Pareto sample (Y1, . . . , Yn), we have the distributional identity

Yn−i+1:n

Yn−k:n

d
= Yk−i+1:k, 1 ≤ i ≤ k.

Moreover, kYn−k:n/n
p−→

n→∞
1, i.e. Yn−k:n

p∼ n/k. Consequently, and provided that k = kn,

1 ≤ k < n, is an intermediate sequence of integers, i.e. if

k = kn →∞ and kn = o(n), as n→∞, (1.6)
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we get

Vik := ln
Xn−i+1:n

Xn−k:n

= ln
U(Yn−i+1:n)

U(Yn−k:n)
= ln

U(Yn−k:n Yk−i+1:k)

U(Yn−k:n)

= ξ lnYk−i+1:k (1 + op(1)) = ξEk−i+1:k(1 + op(1)), (1.7)

with E denoting a standard exponential RV and the op(1)-term uniform in i, 1 ≤ i ≤ k. Hence,

we have the approximation

Vik ≈ ξ lnYk−i+1:k = ξEk−i+1:k, 1 ≤ i ≤ k.

The log-excesses, Vik, 1 ≤ i ≤ k, in (1.3), are thus approximately the k top OSs of a sample of

size k from an exponential parent with mean value ξ. This justifies the H EVI-estimator in (1.4),

the average of the k log-excesses in (1.3).

Apart from the average of the log-excesses, the p-moments of log-excesses, i.e.

M
(p)
k,n :=

1

k

k∑
i=1

{
lnXn−i+1:n − lnXn−k:n

}p
, p ≥ 1, (1.8)

introduced in Dekkers at al. (1989)
[
M

(1)
k,n ≡ H(k)

]
have also played a relevant role in the es-

timation of the EVI, and can more generally be parameterized in p ∈ R \ {0}. And a simple

generalization of the mean is Lehmer’s mean of order p (see Havil, 2003). Given a set of positive

numbers a = (a1, . . . , ak), such a mean generalizes both the arithmetic mean (p = 1) and the

harmonic mean (p = 0), being defined as

Lp(a) :=

k∑
i=1

api

k∑
i=1

ap−1
i

, p ∈ R.

Further note that lim
p→−∞

Lp(a) = min
1≤i≤k

ai and lim
p→+∞

Lp(a) = max
1≤i≤k

ai.

The H EVI-estimator can thus be considered as the Lehmer mean of order 1 of the k log-

excesses V := (Vik, 1 ≤ i ≤ k), in (1.3). We now more generally consider the Lehmer mean of

order p of those statistics. Since from (1.7),

V p
ik ≈ ξpEp

k−i+1:k, 1 ≤ i ≤ k,
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and E(Ep) = Γ(p + 1) for any real p > −1, with Γ(·) denoting the Gamma function, the law of

large numbers enables us to say that

1

k

k∑
i=1

V p
ik

p−→
n→∞

Γ(p+ 1)ξp.

Hence the reason for the class of Lehmer (L) EVI-estimators,

ξ̂Lp(k) ≡ Lp(k) :=
Lp(V)

p
=

1

p

k∑
i=1

V p
ik

k∑
i=1

V p−1
ik

=
M

(p)
k,n

pM
(p−1)
k,n

[
L1(k) ≡ H(k)

]
, (1.9)

consistent for all ξ ≥ 0 and real p > 0, and where M
(p)
k,n is given in (1.8).

As a possible competitive class of EVI-estimators, we further refer the one recently studied

in Brilhante et al. (2013) and Gomes and Caeiro (2014) (see also Paulaskas and Vaičiulis, 2013,

2015; Brilhante et al., 2014; Caeiro et al., 2015; and Gomes et al., 2015a, 2016a, among others.)

On the basis of the fact that the Hill EVI-estimator in (1.4) is the logarithm of the geometric

mean of the statistics Uik := Xn−i+1:n/Xn−k:n, the consideration of the Hölder’s mean of order-p

(MOp) of those same statistics led to the so-called MOp EVI-estimators

ξ̂Hp(k) ≡ Hp(k) :=


(

1−
(

1
k

k∑
i=1

Up
ik

)−1
)
/p, if p 6= 0 < 1/ξ,

H(k), if p = 0.

(1.10)

As shown in Brilhante et al. (2013), this is a very flexible class of EVI-estimators, which is even

able to overpass, for finite sample size n and a wide variety of underlying parents F , one of the

simplest and one of the most efficient EVI-estimators in the literature, the reduced-bias (RB)

corrected-Hill (CH) EVI-estimators in Caeiro et al. (2005), to be introduced in Section 2.2.

In this article, after the introduction, in Section 2, of a few technical details in the field of

EVT, we deal in Section 3 with a few details on the asymptotic behaviour of the class of Lp

EVI-estimators, in (1.9). In Section 4, after showing that at optimal k-levels and for the optimal

p, the members of such a class are able to overall outperform the optimal EVI-estimators in

(1.10), which on its turn had been shown in Brilhante et al. (2013) to have a similar behavior
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comparatively with the optimal Hill EVI-estimator, we compare asymptotically, at optimal levels,

a large set of alternative classes of EVI-estimators, drawing some concluding remarks. Section 5

is dedicated to the finite sample properties of the new class of Lp EVI-estimators, comparatively

with the behaviour of some of the aforementioned EVI-estimators, done through a large-scale

Monte-Carlo simulation study, and giving emphasis to a few peculiar discrepancies between the

asymptotic and the finite sample behaviour of these EVI-estimators. In Section 6, we put forward

a method similar to the one in Brilhante et al. (2013), for the adaptive choice of the vector (k, p)

of tuning parameters, based on the bootstrap methodology, but implementation of the method

and application to real and simulated data is beyond the scope of this article. Finally, in the

Appendix, we provide the proof of the asymptotic normal behavior of the Lp EVI-estimators for

all finite p ≥ 1.

2 Preliminary results in the area of EVT

After a reference, in Section 2.1, to the most common first and second-order frameworks for heavy-

tailed models, we briefly review, in Sections 2.2 and 2.3, some extra popular EVI-estimators.

Recent reviews on the topic of statistical univariate EVT can be found in Beirlant et al. (2012)

and Gomes and Guillou (2015).

2.1 A brief review of first and second-order conditions

In the area of statistical EVT and whenever working with large values, a model F is commonly

said to be heavy-tailed whenever the right tail function F , in (1.2), is a regularly varying function

with a negative index of regular variation equal to −1/ξ, ξ > 0, or equivalently, the reciprocal

quantile function U , in (1.5), is of regular variation with an index ξ, i.e.

F ∈ D+
M := DM (EVξ)ξ>0 ⇐⇒ F ∈ RV−1/ξ ⇐⇒ U ∈ RVξ (2.1)

for all x > 0 (Gnedenko, 1943; de Haan, 1984).

The second-order parameter ρ (≤ 0) rules the rate of convergence in any of the first-order

conditions, in (2.1), and can be defined as the non-positive parameter appearing in the limiting
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relation

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
=


(
xρ − 1

)
/ρ if ρ < 0,

lnx if ρ = 0,
(2.2)

which is assumed to hold for every x > 0, and where |A| must then be of regular variation with

index ρ (Geluk and de Haan, 1987). This condition has been widely accepted as an appropriate

condition to specify the right-tail of a Pareto-type distribution in a semi-parametric way. For

technical simplicity, we often assume that we are working in Hall-Welsh class of models (Hall

and Welsh, 1985), with a right tail function,

F (x) =
(
x/C

)−1/ξ
(

1 + β(x/C
)ρ/ξ

/ρ+ o(xρ/ξ)
)
, as x→∞,

C > 0, β 6= 0 and ρ < 0. Equivalently, we can say that, with (β, ρ) the vector of second-order

parameters, the general second-order condition in (2.2) holds with A(t) = ξβtρ, ρ < 0. Also, and

equivalently,

U(t) = C tξ
(

1 + ξ β tρ/ρ+ o(tρ)
)
, as t→∞. (2.3)

Models like the log-Gamma (ρ = 0) are thus excluded from this class. The standard Pareto

(ρ = −∞) is also excluded. But most heavy-tailed models used in applications, like the EVξ,

in (1.1), the Fréchet, Fξ(x) = exp(−x−1/ξ), x ≥ 0, and the Student’s tν CDFs, among others,

belong to Hall-Welsh class. Further details on first and second-order conditions can be found in

Beirlant et al. (2004), de Haan and Ferreira (2006) and Fraga Alves et al. (2007), among others.

2.2 Explicit EVI-estimators under consideration

Due to its simplicity, the most popular EVI-estimator, valid only for ξ ≥ 0, is the Hill estimator

in (1.4). Apart from the Hill and the aforementioned MOp EVI-estimators estimators in (1.10),

we shall consider the now well-known moment (M) EVI-estimators, studied in Dekkers et al.

(1989), based on
(
M

(1)
k,n,M

(2)
k,n

)
, with M

(p)
k,n defined in (1.8). They are given by

ξ̂M(k) ≡ M(k) := M
(1)
k,n + 1

2

{
1−

(
M

(2)
k,n/
(
M

(1)
k,n

)2 − 1
)−1}

, (2.4)

7



consistent for all ξ ∈ R. We also mention the possibly RB EVI-estimators introduced and studied

in Gomes and Martins (2001), consistent for ξ ≥ 0 and p > −1,

ξ̂GMp(k) ≡ GMp(k) :=
M

(p)
k,n

Γ(p+ 1)
[
M

(1)
k,n

]p−1

[
GM1(k) ≡ H(k) ≡ L1(k), GM2(k) ≡ L2(k)

]
. (2.5)

This class is a particular case of the also possibly RB class of EVI-estimators in Caeiro and

Gomes (2002b) (see also, Caeiro and Gomes, 2002a, 2014b),

ξ̂CGp,δ(k) ≡ CGp,δ(k) :=
Γ(p)

M
(p−1)
k,n

(
M

(δp)
k,n

Γ(δp+ 1)

)1/δ

, δ > 0, p > 0
[
CG1,1(k) ≡ H(k)

]
. (2.6)

For δ = 2 in (2.6), we obtain a class studied in Caeiro and Gomes (2002a), which generalizes the

estimator CG1,2(k) =
√
M

(2)
k,n/2, studied in Gomes et al. (2000). And for the L EVI-estimators

in (1.9), Lp(k) ≡ CGp,1(k).

With the additional notation

L
(j)
k,n :=

1

k

k∑
i=1

(
1− Xn−k:n

Xn−i+1:n

)j
, j ≥ 1, (2.7)

we also consider in the asymptotic comparison at optimal levels performed in Section 4, the

following classes of EVI-estimators:

• The generalised Hill (GH) estimator (Beirlant et al., 1996), based on the Hill estimator in

(1.4) and with the functional form

ξ̂GH(k) ≡ GH(k) := ξ̂H(k) +
1

k

k∑
i=1

{
ln ξ̂H(i)− ln ξ̂H(k)

}
, (2.8)

further studied in Beirlant et al. (2005).

• The mixed moment (MM) estimator (Fraga Alves et al., 2009), based on the statistics M
(1)
k,n

and L
(1)
k,n, respectively given in (1.8) and (2.7), and defined by

ξ̂MM(k) ≡ MM(k) :=
ϕ̂k,n − 1

1 + 2 min (ϕ̂k,n − 1, 0)
, with ϕ̂k,n :=

M
(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 . (2.9)
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• The Pareto (P) probability weighted moment (PPWM) class of EVI-estimators introduced

in Caeiro and Gomes (2011) (see also Caeiro et al., 2014, 2016), dependent on the statistics,

â0(k) :=
1

k

k∑
i=1

Xn−i+1:n, â1(k) :=
1

k

k∑
i=1

i− 1

k − 1
Xn−i+1:n,

defined by

ξ̂PPWM(k) ≡ PPWM(k) := 1− â1(k)

â0(k)− â1(k)
, (2.10)

with k = 1, 2, · · · , n− 1, and consistent for ξ < 1.

• Just as in de Haan and Ferreira (2006), we further consider, also for ξ < 1, the generalized

Pareto (GP) PWM (GPPWM) EVI-estimators of ξ, based on the sample of exceedances

over the high random level Xn−k:n and defined by

ξ̂GPPWM(k) ≡ GPPWM(k) := 1− 2â?1(k)

â?0(k)− 2â?1(k)
, (2.11)

with k = 1, 2, . . . , n− 1, and

â?s(k) :=
1

k

k∑
i=1

(
i− 1

k − 1

)s
(Xn−i+1:n −Xn−k:n), s = 0, 1.

The estimators in (2.4), (2.8) and (2.9) are consistent for any ξ ∈ R.

In the simulation study we consider the simplest class of CH EVI-estimators, the one intro-

duced in Caeiro et al. (2005),

ξ̂CH(k) ≡ ξ̂CH
α̂,β̂,ρ̂

(k) ≡ CH(k) := ξ̂H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
. (2.12)

The estimators in (2.12) can be second-order minimum-variance reduced-bias (MVRB) estima-

tors, for adequate levels k and an adequate external estimation of the vector of second-order

parameters, (β, ρ), in (2.3), i.e., the use of ξ̂CH(k), with an adequate estimation of (β, ρ), en-

ables us to eliminate the dominant component of bias of the H EVI-estimator, ξ̂H(k), keeping its

asymptotic variance. For details on algorithms for the (β, ρ)-estimation, see Gomes and Pestana

(2007a,b) and Gomes et al. (2008b). We have so far suggested the use of the ρ-estimators in

Fraga Alves et al. (2003) and the β-estimators in Gomes and Martins (2002). However, recent
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classes of β-estimators (Caeiro and Gomes, 2006; Gomes et al., 2010; Henriques-Rodrigues et

al., 2015) and ρ-estimators (Goegebeur et al., 2008, 2010; Ciuperca and Mercadier, 2010; de

Wet et al., 2012; Worms and Worms, 2012; Deme et al., 2013; Caeiro and Gomes, 2014a, 2015a;

Henriques-Rodrigues et al., 2014) are potential candidates for the (β, ρ)-estimation. Overviews

on reduced-bias estimation can be found in Chapter 6 of Reiss and Thomas (2007), Beirlant et

al. (2012) and Gomes and Guillou (2015).

2.3 ML EVI-estimators

As mentioned in de Haan and Ferreira (2006), the class of CDFs F ∈ DM(EVξ), either for ξ ≥ 0

or, more generally, for ξ ∈ R, cannot be parameterised with a finite number of parameters,

and consequently, there does not exist an ML estimator for ξ in such a wide class of models.

There exists however an estimator, introduced by Smith (1987), usually denoted as the ML EVI-

estimator. Such an estimator is based on the excesses over a deterministic high level u, but can

be easily rephrased on the basis of the excesses over the high random threshold Xn−k:n,

Wik := Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k < n. (2.13)

For models in (2.1), these k excesses are approximately distributed as the whole set of the k top

OSs associated with a sample of size k from a GP CDF, GP(x; ξ, α) = 1− (1 + α x)−1/ξ , x > 0,

(α, ξ > 0), a quite relevant re-parametrization due to Davison (1984). Indeed, αWik is well

approximated by Y ξ
k−i+1:k − 1, with Y a unit Pareto RV. The solution of the associated ML

equations gives then rise to an explicit expression for the ML EVI-estimator, a function of the

ML implicit estimator α̂
ML

of α and the sample of excesses, given by

ξ̂ML(k) ≡ ξ̂ML(k, α̂
ML

) ≡ ML(k) :=
1

k

k∑
i=1

ln(1 + α̂
ML

Wik). (2.14)

A comprehensive study of the asymptotic properties of the ML estimator in (2.14) has been

undertaken in Drees et al. (2004). As recently shown by Zhou (2009, 2010), such an EVI–

estimator is also consistent for ξ > −1. We can also consider the random threshold Xn−k:n

replaced by a deterministic threshold u, working then under the POT methodology, introduced

in Smith (1987).
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Remark 1. A simple heuristic estimator of α is 1/Xn−k:n. If we consider α̂ = 1/Xn−k:n and

the excesses W
ik
, 1 ≤ i ≤ k, in (2.13), 1 + α̂ Wik = Xn−i+1:n/Xn−k:n. Then, ξ̂ML(k, α̂) =

1
k

∑k
i=1 {lnXn−i+1:n − lnXn−k:n} is the average of the log-excesses Vik, 1 ≤ i ≤ k, i.e. it is the

classical H EVI-estimator in (1.4).

Remark 2. Note that all the aforementioned EVI-estimators are scale invariant. The GPPWM

estimators, in (2.11) and the ML estimators in (2.14) are also location invariant, and can be

regarded as classes of peaks over random threshold (PORT) EVI-estimators, the acronymous

introduced in Araújo Santos et al. (2006) for estimators of parameters of rare events based on

excesses over a central empirical quantile and even over the minimum of the available sample

whenever possible, i.e. when the underlying parent F has a finite left endpoint (see Gomes et al.,

2008a, for details on the topic). Further PORT EVI-estimation can be found in Gomes et al.

(2011a; 2012a; 2013a; 2015c), Gomes and Henriques-Rodrigues (2013) and Caeiro et al. (2016).

Remark 3. Further note that the MM EVI-estimators, in (2.9), are very close to the ML EVI-

estimators for a wide class of models with ξ ≥ 0 (see Fraga Alves et al., 2009).

3 Asymptotic behaviour of the EVI-estimators

Under the validity of the second-order condition in (2.2), trivial adaptations of the results in de

Haan and Peng (1998), Drees et al. (2004), Beirlant et al. (2005), Caeiro et al. (2005), de Haan

and Ferreira (2006), Fraga Alves et al. (2009) and Caeiro and Gomes (2011), respectively for the

H, ML, GH, CH, GPPWM, MM and PPWM EVI-estimators, enable us to state the following

theorem.

Theorem 1. Assume that condition (2.2) holds. Let k = kn be such that (1.6) holds, and let us

additionally assume that we are working with values of k such that λ
A

:= limn→∞
√
k A(n/k)

is finite. We can then guarantee that for ξ > 0, the H, M, GH, MM, PPWM, GPPWM and

ML EVI-estimators, generally denoted ξ̂•(k), and respectively defined in (1.4), (2.4), (2.8), (2.9),

(2.10), (2.11) and (2.14), are asymptotically normal, i.e.

√
k
(
ξ̂•(k)− ξ

)
d−→

n→∞
N
(
λ
A
b•, σ

2
•
)
, (3.1)
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where N (µ, σ2) stands for a normal RV with mean value µ and variance σ2,

b
H

=
1

1− ρ
, σ2

H
= ξ2, b

M
= b

GH
=
ξ − ξρ+ ρ

ξ(1− ρ)2
, σ2

M
= σ2

GH
= 1 + ξ2,

b
MM

= b
ML

=
(1 + ξ)(ξ + ρ)

ξ(1− ρ)(1 + ξ − ρ)
, σ2

MM
= σ2

ML
= (1 + ξ)2,

and for ξ < 1/2,

b
PPWM

=
(1− ξ)(2− ξ)

(1− ξ − ρ)(2− ξ − ρ)
, σ2

PPWM
=
ξ2(1− ξ)(2− ξ)2

(1− 2ξ)(3− 2ξ)
,

b
GPPWM

=
(ξ + ρ) b

PPWM

ξ
and σ2

GPPWM
=

(1− ξ + 2ξ2)(1− ξ)(2− ξ)2

(1− 2ξ)(3− 2ξ)
.

If we further assume to be working in Hall-Welsh class of models in (2.3), and estimate β

and ρ consistently through β̂ and ρ̂, with ρ̂− ρ = op(1/ lnn), we get b
CH

= 0 and σ2
CH

= σ2
H

= ξ2,

for the RB EVI-estimator in (2.12).

3.1 Further details on the asymptotic behaviour of the EVI-

estimators under consideration

For the EVI-estimators dependent on a tuning parameter p, trivial adaptations of the results in

Gomes and Martins (2001), Caeiro and Gomes (2002b) and Brilhante et al. (2013), respectively

for the GMp, CGp,δ and Hp classes of EVI-estimators, enable us to state the following theorem.

Theorem 2. Under the validity of the first-order condition, in (2.1), and for intermediate se-

quences k = kn, i.e. if (1.6) holds, the classes Hp, GMp and CGp,δ, respectively defined in

(1.10), (2.5) and (2.6), are consistent for the estimation of ξ ≥ 0, provided that p ∈ R•, where

R
H

= {p : p ≤ 1/ξ}, R
GM

= {p : p > −1} and R
CG

= {(p, δ) : p > 0, δ > −1/p}.
Under the conditions of Theorem 1, for any of the estimators in (1.10), (2.5) and (2.6),

also generally denoted ξ̂•(k), and for adequate regions of the tuning parameters p and δ, (3.1)

holds, with

bGMp =
1− (1− ρ)p

ρ(1− ρ)p
− p− 1

1− ρ
, σ2

GMp
= ξ2

{
Γ(2p+ 1)

Γ2(p+ 1)
− p2

}
(p > −1/2), (3.2)
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b
CGp,δ

=
(1− ρ)−δp − δ(1− ρ)−p+1 + δ − 1

δρ
,

σ2
CGp,δ

=
ξ2

δ2

{
2Γ(2δp)

δpΓ2(δp)
+
δ2Γ(2p− 1)

Γ2(p)
− 2Γ((δ + 1)p)

pΓ(p)Γ(δp)
− (δ − 1)2

}
(p ≥ 1, δ > 0), (3.3)

bHp =
1− pξ

1− pξ − ρ
σ2

Hp =
ξ2(1− pξ)2

1− 2pξ
(p < 1/(2ξ). (3.4)

For the particular case δ = 1, in (2.6), i.e. for the Lp EVI-estimator in (1.9), we can state:

Corollary 1. Under the validity of the initial first-order conditions in Theorem 2, the class of

Lp EVI-estimator sin (1.9), is consistent for the estimation of ξ ≥ 0, provided that p ∈ RL =

{p : p > 0}. Under the conditions of Theorem 1, (3.1) holds, with

bLp =
1

(1− ρ)p
and σ2

Lp =
ξ2 Γ(2p− 1)

Γ2(p)
(p ≥ 1). (3.5)

For an isolated proof of the Corollary 1 related to the Lp EVI-estimators, in (1.9), see the

Appendix.

Remark 4. Note that regarding the Lp EVI-estimators, in (1.9), Corollary1 is a particular case

of Theorem 1 in Caeiro and Gomes (2002b), but trivially generalizing consistency for p > 0

rather than p ≥ 1. Further note that there is a full agreement between (3.5) and (3.3), the results

provided in Theorem 1 of Caeiro and Gomes (2002b), whenever δ = 1.

Remark 5. More specifically than in Corollary 1, note that the validity of the second-order

condition in (2.2) and p ≥ 1, enables us to write for all ρ ≤ 0 the asymptotic distributional

representation

Lp(k)
d
= ξ +

σLp Z
(p)
k√
k

+ bLp A(n/k) + op(A(n/k)) (3.6)

with (bLp , σ
2
Lp

) given in (3.5), and where Z
(p)
k is an asymptotically standard normal RV. A similar

result for p = 1, i.e. for the H EVI-estimator was derived in de Haan and Peng (1998).

Remark 6. Note that for p = 2, in (1.8), and a heavy tail (see Gomes et al., 2000), we get

M
(2)
k,n

d
= 2ξ2 +

ξ2 P
(2)
n√
k

+
2ξ(2− ρ)A(n/k)

(1− ρ)2
+ op(A(n/k),
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where P
(2)
n

d
=
√
k{
∑k

i=1E
2
i /k − 2}, and (P

(1)
n , P

(2)
n ) is asymptotically bivariate normal with

null mean and covariance matrix Σ2 =

 1 4

4 20

 (Dekkers et al., 1989). Further note that an

alternative to the H EVI-estimator, and related to the EVI-estimator in (1.9), but with p = 2,

was considered in de Haan and Peng (1998), and was there attributed to Casper de Vries. For

such estimator, L2(k) = M2
k,n/
(
2M

(1)
k,n

)
, Gomes et al. (2000) derived the asymptotic distributional

representation

L2(k)
d
= ξ +

ξ
√

2Z
(2)
n√
k

+
A(n/k)

(1− ρ)2
+ op(A(n/k)) + op(1/

√
k),

where Z
(2)
n =

(
P

(2)
n /2− P (1)

n

)
/
√

2 is asymptotically Normal(0,1). For an asymptotic comparison

at optimal levels of L2 and L1, see Gomes et al. (2000).

Remark 7. Gomes and Martins (2001) considered M
(p)
k,n, in (1.8), and got the asymptotic dis-

tributional representation

M
(p)
k,n

d
= ξp

{
Γ(p+ 1) +

P
(p)
n√
k

+
Γ(p+ 1) (1− (1− ρ)p)A(n/k)

ξρ(1− ρ)p

}
+ op(A(n/k), (3.7)

where (P
(1)
n , P

(p)
n ) is asymptotically a bivariate normal vector, with zero mean and covariance

matrix

Σp =

 1 pΓ(p+ 1)

pΓ(p+ 1) Γ(2p+ 1)− Γ2(p+ 1)

 .
In the above mentioned article, the class of EVI-estimators in (2.5) was introduced and studied

both asymptotically and for finite samples. Then, an asymptotic distributional representation of

the type of the one in (3.6) holds for the EVI-estimator in (2.5) and p ≥ 1, with
(
σ2

Lp
, b

Lp

)
replaced by

(
σ2

GMp
, b

GMp

)
, in (3.2). This class of EVI-estimators can be second-order RB, i.e.

there exists a non-explicit value of p0 such that b
GMp0

= 0.

Remark 8. Further note that for the MOp EVI-estimators, now denoted Hp and defined in

(1.10), a distributional representation of the type of the one in (3.6) holds for p < 1/(2ξ), with(
σ2

Hp
, bHp

)
given in (3.4).
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For any ξ > 0, the asymptotic variance σ2
Lp

(ξ), in (3.5), has a minimum at p = 1. In Figure

1 (left), we present the normalized standard deviation, σLp(ξ)/ξ, independent of ξ, as a function

of p. On the other side, the asymptotic bias ruler, bLp(ρ), also in (3.5), is independent of ξ and

always decreasing in p. Such a performance is shown in Figure 1 (right).

0

1

2

3

4

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

!Lp (") / "

p
0.0

0.5

1.0

0 1 2 3 4

bLp (!)

p

! = "0.1

! = "0.25

! = "0.5

! = "1

Figure 1: Graph of σLp(ξ)/ξ, as a function of p > 0.5 (left) and of the asymptotic bias ruler bLp(ρ), for

ρ = −0.1,−0.25,−0.5 and −1, as a function of p ≥ 0

These aforementioned results claim for an asymptotic comparison, at the optimal k and (k, p)-

values, of the class of EVI-estimators in (1.10), a topic to be dealt with in Section 4. In such a

comparison we shall consider all EVI-estimators non-dependent of p, together with the Lp and

Hp EVI-estimators, respectively given in (1.9) and in (1.10), computed at the optimal p. The

classes GMp and CGp,δ, δ > 1, at optimal tuning parameters’ values, will be excluded due to the

fact that such classes can be second-order RB in the whole (ξ, ρ)-plane.

4 Asymptotic comparison at optimal levels

We next proceed to the comparison of ‘classical’ EVI-estimators at their optimal levels. This is

again done in a way similar to the one used in de Haan and Peng (1998), Gomes and Martins

(2001), Gomes et al. (2005, 2007, 2013b, 2015b), Gomes and Neves (2008), Gomes and Henriques-

Rodrigues (2010) and Brilhante et al. (2013). Let us assume that ξ̂•(k) denotes any arbitrary
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semi-parametric EVI-estimator, for which we have the asymptotic distributional representation

ξ̂•(k) = ξ +
σ• Z

•
k√
k

+ b• A(n/k) + op(A(n/k)), (4.1)

for any intermediate sequence of integers k = kn, and where Z•k is asymptotically standard

normal. Then,
√
k
(
ξ̂•(k) − ξ

) d→ N(λ
A
b•, σ

2
•) provided that k is such that

√
k A(n/k)→ λ

A
,

finite, as n → ∞. We then write Bias∞
(
ξ̂•(k)

)
:= b• A(n/k) and Var∞

(
ξ̂•(k)

)
:= σ2

•/k. The

so-called asymptotic mean square error (AMSE) is then given by

AMSE
(
ξ̂•(k)

)
:= σ2

•/k + b2
• A

2(n/k).

Regular variation theory (Bingham et al., 1987), enabled Dekkers and de Haan (1993) to show

that, whenever b• 6= 0, there exists a function ϕ(n) = ϕ(n, ξ, ρ), such that

lim
n→∞

ϕ(n) AMSE
(
ξ̂•n0

)
=
(
σ2
•
)− 2ρ

1−2ρ
(
b2
•
) 1

1−2ρ =: LMSE
(
ξ̂•n0

)
,

where ξ̂•n0 := ξ̂•(k0|•(n)) and k0|•(n) := arg min
k

MSE
(
ξ̂•(k)

)
. Moreover, if we slightly restrict

the second-order condition in (2.2), assuming that A(t) = ξβtρ, ρ < 0, just as happens for the

class in (2.3), we can write

k0|•(n) := arg min
k

MSE
(
ξ̂•(k)

)
=

(
σ2
• n
−2ρ

b2
•ξ

2β2(−2ρ)

)1/(1−2ρ)

(1 + o(1)).

We again consider the following:

Definition 1. Given two biased estimators ξ̂(1)(k) and ξ̂(2)(k), for which a distributional rep-

resentation of the type of the one in (4.1) holds, with constants (σ1, b1) and (σ2, b2), b1, b2 6= 0,

respectively, both computed at their optimal levels, the asymptotic root efficiency (AREFF) of

ξ̂
(1)
n0 relatively to ξ̂

(2)
n0 is

AREFF1|2 ≡ AREFF
ξ̂
(1)
n0 |ξ̂

(2)
n0

:=

√
LMSE

(
ξ̂

(2)
n0

)
/LMSE

(
ξ̂

(1)
n0

)
=
((σ2

σ1

)−2ρ∣∣∣b2

b1

∣∣∣) 1
1−2ρ

. (4.2)

Remark 9. Note that the AREFF-indicator, in (4.2), has been conceived so that the highest the

AREFF indicator is, the better is the first estimator.
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Remark 10. Further note that some of the aforementioned ‘classical’ EVI-estimators can be

second-order RB in some regions of the (ξ, ρ)-plane. We can thus not apply Definition 1,

because b2 = 0. This happens with the MM, the GPPWM and the ML EVI-estimators, in (2.9),

(2.11) and (2.14), respectively, all second-order RB EVI-estimators in the region ξ + ρ = 0(
where b

MM
= b

GPPWM
= b

ML
= 0

)
. Consequently, and for ξ + ρ = 0, they are expected to

asymptotically outperform at optimal levels any of the other EVI-estimators. Despite of the fact

that σ
GPPWM

> σ
MM

= σ
ML

> σ
H

= σ
CH

, this does not mean too much. All depends on the

dominant component of bias . . . and it is without doubt a challenge for further research, out of

the scope of this paper, already partially dealt with in Caeiro et al. (2009). A similar comment

applies to the behaviour of the M and the GH EVI-estimators in the region ξ = −ρ/(1 − ρ)(
where b

M
= b

GH
= 0

)
. Again, despite of the fact that the M and the GH EVI-estimators

have an asymptotic variance equal to 1 + ξ2 > ξ2, the asymptotic variance of H and CH, all

depends on the comparative behaviour of the mean square errors. At the optimal p in the sense

of minimal RMSE, the classes of GMp and CGp,δ, δ > 1, EVI-estimators, respectively given in

(2.5) and (2.6) are second-order RB EVI-estimators in the whole (ξ, ρ)-plane, and just as the

CH class, in (2.12), will be excluded from the asymptotic comparison at optimal levels. However

the Lp and Hp EVI-estimators, respectively given in (1.9) and (1.10), are never second-order RB

EVI-estimators, and will be crucially included in the asymptotic comparison in Section 4.1.

4.1 Asymptotic comparison of Lp and Hp EVI-estimators at optimal

levels

Let us now turn back to the Lp EVI-estimators Lp(k) in (1.9). We have

LMSE(L0|p) =
(
ξ2Γ(2p− 1)/Γ2(p)

)− 2ρ
1−2ρ

(
(1− ρ)−2p

) 1
1−2ρ

and

AREFFLp|L1 =

((
Γ(p)/

√
Γ(2p− 1)

)−2ρ

(1− ρ)p−1

) 1
1−2ρ

. (4.3)

Remark 11. In Gomes et al. (2000) was shown that the asymptotic relative efficiency (AREFF)

of L2(k) comparatively to L1(k) is given by AREFFL2|L1 = [2ρ(1− ρ)]1/(1−2ρ), in agreement with

(4.3). As noticed in the aforementioned article, AREFFL2|L1 > 1 ⇐⇒ −1 < ρ < 0.
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To measure the performance of H0|p, with Hp the MOp EVI-estimator in (1.10), Brilhante et

al. (2013) computed a similar AREFF-indicator, given by

AREFFHp|H0 =

((√
1− 2pξ

1− pξ

)−2ρ ∣∣∣∣ 1− pξ − ρ
(1− ρ)(1− pξ)

∣∣∣∣
) 1

1−2ρ

, (4.4)

reparameterised in (ρ, a = pξ < 1/2), and denoted AREFF∗a|0. In Figure 2, we picture the

contour plots of AREFFLp|L1 in (4.3) (left) and of AREFF∗a|0 (right), in (4.4).

Figure 2: Contour plots of AREFFLp|L1
, in (4.3) (left) and of ARREF∗a|0, in (4.4) (right)

The gain in efficiency is not terribly high, but, at optimal levels, there is a wide region of the

(p, ρ)-plane where the new class of Lp EVI-estimators performs better than the Hill estimators,

with efficiencies slightly higher than the ones associated with the comparison of Hp and the

Hill, in the (a, ρ)-plane. This result together with the fact that as far as we know, the EVI-

estimator in (1.10) computed at the optimal p in the sense of minimal AREFFHp|H0 , i.e. at

p
M|H ≡ p

M|H(ρ) := arg maxp AREFFHp|H0 , explicitly given by

p
M|H = ϕρ/ξ, with ϕρ := 1− ρ/2−

√
ρ2 − 4ρ+ 2

/
2

and bpM|H 6= 0, is the unique non-RB EVI-estimator which is able to beat the Hill EVI-estimator

in the whole (ξ, ρ)-plane, immediately leads us to think on what happens for the optimal value

of p associated with the Lp EVI-estimation.
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In Figure 3 (left), we picture the indicator AREFFLp|L1 , as a function of p for |ρ| = 0(0.1)2.

In the same Figure (right), the value of p
M|L = p

M|L(ρ) := arg maxp AREFFLp|L1 is pictured as a

function of |ρ|.
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Figure 3: AREFFLp|L1
, as a function of p, for |ρ| = 0(0.1)2 (left) and the value of p

M|L = p
M|L(ρ), as a

function of |ρ| (right)

Indeed, just as AREFFHp
M|H
|H0 > 1, for any ρ < 0 and ξ > 0, also, at p

M|L ≡ p
M|L(ρ) :=

arg maxp AREFFLp|L1 ,

AREFFLp
M|L
|L1 > 1,

for any ρ < 0 and ξ > 0. Moreover,

AREFFLp
M|L
|L1 > AREFFHp

M|H
|H0 ,

as illustrated in Figure 4.

4.2 An overall comparison of EVI-estimators at optimal levels

As mentioned above and first detected by Brilhante et al. (2013), the optimal MOp EVI-estimator

can beat the optimal Hill EVI-estimator in the whole (ξ, ρ)-plane. But it is now beaten by

the optimal Lehmer EVI-estimator also in the whole (ξ, ρ), an atypical behaviour among other

classical EVI-estimators.
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Figure 4: AREFFLp
M|L
|L1

and AREFFHp
M|H
|H0

as a function of |ρ| = 0(0.1)2

But again, as happened before with the optimal MOp EVI-estimator, the optimal Lehmer

EVI-estimator can be beaten by the M EVI-estimator in a region close to ξ = −ρ/(1− ρ), where

b
M

= 0. The MM-estimator in (2.9), asymptotically equivalent to the ML-estimator, unless

ξ + ρ = 0 and (ξ, ρ) 6= (0, 0), outperforms the M EVI-estimator at optimal levels, in a region

around ξ + ρ = 0, and can even outperform the optimal Lehmer EVI-estimator, as can be seen

in Figure 5, where we exhibit the comparative behaviour of all ‘classical’ EVI-estimators under

consideration, including both the L and the H classes (bottom), after including only the H class

(top), as done in Brilhante et al. (2013). The GPPWM EVI-estimator is RB for ξ + ρ = 0, and

can beat the MM EVI-estimator in a short region of the (ξ, ρ)-plane. The PPWM can beat even

the optimal Lehmer for a few values of ξ around 0.1.

As expected, none of the estimators can always dominate the alternatives, but the Lp EVI-

estimators have a nice performance, being unexpectedly able to beat the MOp ≡ Hp EVI-

estimators at optimal levels in the whole (ξ, ρ)-plane.

Remark 12. As already mentioned in Brilhante et al. (2013), note that in the region ξ + ρ 6= 0

and ξ 6= −ρ/(1 − ρ), the CH-estimators, in (2.12), overpass at optimal levels all other classical

estimators under consideration. They were thus not included in Figure 5, so that we can see the
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-1.40 L* L* L* L* L* L* M M L* L* L* L* MM MM ML MM MM MM MM MM MM

-1.50 L* L* L* L* L* L* M M L* L* L* L* MM MM MM ML MM MM MM MM MM

-1.60 L* L* L* L* L* L* M M L* L* L* L* L* MM MM MM ML MM MM MM MM

-1.70 L* L* L* L* L* L* M M L* L* L* L* L* L* MM MM MM ML MM MM MM

-1.80 L* L* L* L* L* L* M M L* L* L* L* L* L* L* MM MM MM ML MM MM

-1.90 L* L* L* L* L* L* L* M L* L* L* L* L* L* L* L* MM MM MM ML MM

-2.00 L* L* L* L* L* L* L* M L* L* L* L* L* L* L* L* MM MM MM MM ML

Figure 5: Comparative overall behaviour of the classical EVI-estimators under consideration, consid-

ering only the optimal Hp, denoted H∗ (top) and including both the optimal Hp and Lp, denoted L∗

(bottom)

comparative behaviour of the non reduced-bias EVI-estimators. A similar comment applies to the

optimal GM and CG EVI-estimators, as mentioned above.
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5 Finite sample properties of the EVI-estimators

We have implemented multi-sample Monte Carlo simulation experiments of size 5000×10 for the

class of Lp EVI-estimators, in (1.9), comparatively with the MVRB EVI-estimators, in (2.12),

for sample sizes n = 100, 200, 500, and 1000, from the following underlying models:

(2) the extreme value model, with CDF F (x) = EVξ(x), with EVξ(x) given in (1.1), ξ =

0.1, 0.25, 0.5 and 1 (ρ = −ξ);

(1) the Fréchet model, with CDF F (x) = exp(−x−1/ξ), x ≥ 0, for the same values of ξ

(ρ = −1);

(3) the generalised Pareto model, with CDF F (x) = 1 + ln EVξ(x) = 1 −
(
1 + ξx

)−1/ξ
,

0 ≤ x < −1/ξ, EVξ(x) given in (1.1), also for the same values of ξ (ρ = −ξ);

(4) the Student-tν , with ν = 2, 3, 4 (ξ = 1/ν, ρ = −2/ν).

For details on multi-sample simulation, see Gomes and Oliveira (2001), among others.

5.1 Mean values and mean square error patterns

For each value of n and for each of the above-mentioned models, we have first simulated the

mean value (E) and the root mean square error (RMSE) of the estimators Lp(k), in (1.9), as

functions of the number of top order statistics k involved in the estimation and for a few values

of p ≥ 1. We have first implemented a simulation for EV0.25 parents and values of p from 1 until

3, with step 0.5. The results obtained were slight astonishing from a theoretical point of view,

because the highest efficiency was obtained for p = 3, being increasing with p. But as can be

seen in Figure 6, based on the first replicate with a size 5000, and at optimal levels, in the sense

of minimal RMSE, even L1.5 beats the MVRB EVI-estimators, CH, in (2.12), also pictured in

Figure 6, being p = 1.5 a value close to p
M|L = 1.7.

And for ξ = 0.25 an increase in the values of p provided even better results, as can be seen

in Figure 7, where we present the simulated mean values and RMSEs of Lp for p = 3, 6(1).

However, as p→ +∞, Lp(k)→ 0, being no longer consistent for the estimation of ξ > 0 (look

at Figure 8, where apart from p = 4 and 6 we also represent p = 8, 10 and 15. In these cases
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Figure 6: Mean values (left) and RMSEs (right) of the CH and Lp EVI-estimators under study for an

EVξ CDF with ξ = 0.25, and p = 1.5 and 3
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Figure 7: Mean values (left) and RMSEs (right) of the CH and Lp EVI-estimators under study for an

EVξ CDF with ξ = 0.25, and p = 3, 4, 5 and 6

we still have a minimum RMSE at k < n, but such a minimum RMSE is attained at k = n− 1

for larger values of p, as can be seen in Figure 9, similar to Figure 8, but for p = 30, 40 and 50.

In any adaptive choice of (k, p) we should thus avoid a minimum RMSE estimate attained at

k = n − 1. We indeed believe that the aforementioned behaviour for small ξ is due to the the

fact that Lp(k) goes to zero as p → +∞. However, even for very small values of ξ, if we go on

increasing p, we finally detect a decreasing in efficiency. An adaptive choice of (k, p) associated

to RMSE minimization, avoiding values of k close to n− 1, is thus advisable.
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EVξ CDF with ξ = 0.25, and p = 30, 40 and 50
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Figure 9: Mean values (left) and RMSEs (right) of the CH and Lp EVI-estimators under study for an

EVξ CDF with ξ = 0.25, and p = 30, 40 and 50

Note however that the type of pattern mentioned above, i.e. an increasing efficiency as p

increases and an outperformance comparatively with the CH EVI-estimator, has been obtained

only for values of ξ not far away from zero, as can be seen in Figure 10, associated with an

EV1 underlying parent. We still include in Figure 11 a similar picture for a Student t4 parent

(ξ = 1/ν = 0.25, ρ = −2/ν = −0.5).

Similar results have been obtained for all other simulated models. We can always find an
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Figure 11: Mean values (left) and RMSEs (right) of the EVI-estimators under study for a Student t4

CDF (ξ = 0.25), and p = 3 and 6

optimal value for p, clear from these pictures in what concerns RMSE, but often also valid for

mean values at optimal levels, in the sense of minimal RMSE, as we shall see next, in Section

5.1.1.
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5.1.1 Mean values of the EVI-estimators at optimal levels

Tables 1 and 2 are respectively related to the simulated EVξ and GPξ parents with ξ < 1. We

there present, for n = 100, 200, 500 and 1000, the simulated mean values at optimal levels (levels

where RMSE are minima as functions of k) of the EVI-estimators CH, in (2.12) and Lp(k), in

(1.9), for a few values of p, including p = 1 (H). Information on 95% confidence intervals,

computed on the basis of the 10 replicates with 5000 runs each, is also provided. Among the

estimators considered, the one providing the smallest squared bias is underlined, and written in

bold.

Due to the aforementioned difference found for ξ = 1, we present Tables 3 and 4, respectively

associated with EV1 and GP1 underlying parents and a slightly larger region of values of p

between 1 and 2. Table 5 is related with Fréchet underlying models. Note that in all cases, the

mean value of Lp(k) is decreasing in p, and we thus can always find a value of p associated with

minimal squared bias, often not visible in the tables. Finally, we still present Table 6, related to

the simulated Student underlying parents.

Remark 13. We may draw the following specific comments:

• As intuitively expected, L0|p are decreasing in p until a value pmin, approaching the true

value of ξ, for all simulated models.

• But we cannot forget that as p increases to +∞, L0|p approaches zero, being no longer

consistent. We thus need to have estimated reliable values of the RMSE.

• For ξ < 1, the Lp EVI–estimators outperform the MVRB EVI-estimators.
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Table 1: Simulated mean values, at optimal levels, of H(k) ≡ L1(k), CH(k) and Lp(k), Lp(k), p = 1, 2(2)10, and 15, for EVξ

underlying parents with ξ = 0.1, 0.25 and 0.5, together with 95% confidence intervals

n 100 200 500 1000

EVξ parent, ξ = 0.1

CH 0.276± 0.0016 0.258± 0.0014 0.234± 0.0012 0.221± 0.0013

p = 1 (H) 0.334± 0.0009 0.284± 0.0007 0.243± 0.0005 0.223± 0.0016

p = 2 0.253± 0.0006 0.220± 0.0006 0.191± 0.0005 0.175± 0.0006

p = 4 0.159± 0.0004 0.138± 0.0004 0.121± 0.0003 0.111± 0.0004

p = 6 0.112± 0.0003 0.097± 0.0003 0.097± 0.0003 0.098± 0.0004

p = 8 0.101± 0.0007 0.098± 0.0008 0.099± 0.0005 0.099± 0.0003

p = 10 0.097± 0.0002 0.099± 0.0004 0.099± 0.0002 0.099± 0.0002

p = 15 0.099± 0.0002 0.099± 0.0002 0.100± 0.0001 0.100± 0.0001

EVξ parent, ξ = 0.25

CH 0.382± 0.0027 0.372± 0.0021 0.353± 0.0014 0.342± 0.0017

p = 1 (H) 0.427± 0.0012 0.391± 0.0026 0.365± 0.0019 0.348± 0.0012

p = 2 0.332± 0.0009 0.314± 0.0026 0.320± 0.0018 0.317± 0.0011

p = 4 0.252± 0.0007 0.256± 0.0012 0.260± 0.0008 0.265± 0.0004

p = 6 0.249± 0.0010 0.252± 0.0006 0.253± 0.0004 0.254± 0.0003

p = 8 0.249± 0.0009 0.250± 0.0005 0.251± 0.0003 0.251± 0.0003

p = 10 0.246± 0.0011 0.249± 0.0005 0.250± 0.0002 0.250± 0.0001

p = 15 0.190± 0.0040 0.226± 0.0032 0.248± 0.0002 0.249± 0.0002

EVξ parent, ξ = 0.5

CH 0.554± 0.0053 0.573± 0.0016 0.564± 0.0014 0.558± 0.0010

p = 1 (H) 0.654± 0.0032 0.624± 0.0033 0.596± 0.0011 0.579± 0.0016

p = 2 0.591± 0.0026 0.585± 0.0020 0.575± 0.0009 0.565± 0.0009

p = 4 0.523± 0.0011 0.535± 0.0010 0.546± 0.0008 0.549± 0.0011

p = 6 0.499± 0.0019 0.511± 0.0007 0.519± 0.0005 0.525± 0.0006

p = 8 0.422± 0.0068 0.484± 0.0045 0.507± 0.0005 0.512± 0.0003

p = 10 0.350± 0.0059 0.410± 0.0047 0.479± 0.0037 0.503± 0.0004

p = 15 0.242± 0.0043 0.289± 0.0036 0.348± 0.0031 0.387± 0.0023
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Table 2: Simulated mean values, at optimal levels, of H(k) ≡ L1(k), CH(k) and Lp(k), p = 1, 2(2)10, and 15, for GPξ underlying

parents with ξ = 0.1, 0.25 and 0.5, together with 95% confidence intervals

n 100 200 500 1000

GPξ parent, ξ = 0.1

CH 0.303± 0.0012 0.270± 0.0011 0.238± 0.0022 0.221± 0.0028

p = 1 (H) 0.325± 0.0013 0.282± 0.0012 0.242± 0.0012 0.224± 0.0027

p = 2 0.249± 0.0015 0.219± 0.0011 0.190± 0.0008 0.175± 0.0014

p = 4 0.156± 0.0010 0.138± 0.0007 0.120± 0.0006 0.111± 0.0009

p = 6 0.110± 0.0007 0.097± 0.0005 0.097± 0.0004 0.098± 0.0006

p = 8 0.099± 0.0006 0.099± 0.0013 0.099± 0.0008 0.099± 0.0005

p = 10 0.099± 0.0004 0.099± 0.0003 0.099± 0.0003 0.099± 0.0003

p = 15 0.099± 0.0006 0.100± 0.0003 0.099± 0.0001 0.100± 0.0002

GPξ parent, ξ = 0.25

CH 0.404± 0.0044 0.382± 0.0027 0.358± 0.0018 0.344± 0.0030

p = 1 (H) 0.418± 0.0030 0.389± 0.0037 0.364± 0.0028 0.348± 0.0028

p = 2 0.326± 0.0020 0.314± 0.0039 0.320± 0.0022 0.318± 0.0024

p = 4 0.251± 0.0033 0.256± 0.0016 0.261± 0.0010 0.266± 0.0008

p = 6 0.249± 0.0015 0.251± 0.0007 0.253± 0.0007 0.254± 0.0006

p = 8 0.250± 0.0011 0.251± 0.0007 0.251± 0.0004 0.251± 0.0003

p = 10 0.249± 0.0004 0.249± 0.0006 0.250± 0.0003 0.251± 0.0003

p = 15 0.248± 0.0003 0.250± 0.0004 0.250± 0.0002 0.250± 0.0002

GPξ parent, ξ = 0.5

CH 0.612± 0.0043 0.593± 0.0032 0.576± 0.0022 0.565± 0.0013

p = 1 (H) 0.646± 0.0082 0.621± 0.0037 0.593± 0.0040 0.577± 0.0021

p = 2 0.594± 0.0031 0.586± 0.0016 0.573± 0.0015 0.564± 0.0017

p = 4 0.530± 0.0014 0.539± 0.0012 0.547± 0.0016 0.550± 0.0018

p = 6 0.509± 0.0011 0.514± 0.0007 0.521± 0.0007 0.527± 0.0010

p = 8 0.503± 0.0015 0.506± 0.0009 0.510± 0.0004 0.514± 0.0005

p = 10 0.500± 0.0007 0.502± 0.0011 0.505± 0.0005 0.508± 0.0001

p = 15 0.458± 0.0009 0.485± 0.0008 0.499± 0.0016 0.501± 0.0024
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Table 3: Simulated mean values, at optimal levels, of H(k) ≡ L1(k), CH(k) and Lp(k), p = 1(0.2)1.6, 2 and 6, for EV1 underlying

parent, together with 95% confidence intervals

n 100 200 500 1000

CH 0.894± 0.0099 0.975± 0.0046 1.003± 0.0024 1.004± 0.0013

p = 1 (H) 1.159± 0.0049 1.124± 0.0032 1.091± 0.0030 1.072± 0.0020

p = 1.2 1.138± 0.0078 1.113± 0.0048 1.085± 0.0024 1.068± 0.0017

p = 1.4 1.132± 0.0052 1.109± 0.0039 1.081± 0.0020 1.066± 0.0016

p = 1.6 1.125± 0.0047 1.105± 0.0021 1.079± 0.0021 1.065± 0.0013

p = 2 1.116± 0.0029 1.100± 0.0022 1.079± 0.0010 1.065± 0.0008

p = 6 0.798± 0.0088 0.901± 0.0062 0.999± 0.0045 1.044± 0.0021

Table 4: Simulated mean values, at optimal levels, of H(k) ≡ L1(k), CH(k) and Lp(k), p = 1(0.2)1.6, 2 and 6, for GP1 underlying

parent, together with 95% confidence intervals

n 100 200 500 1000

CH 1.008± 0.0036 1.006± 0.0027 1.002± 0.0017 1.001± 0.0025

p = 1 (H) 1.136± 0.0072 1.110± 0.0063 1.078± 0.0041 1.063± 0.0040

p = 1.2 1.124± 0.0050 1.101± 0.0041 1.073± 0.0019 1.060± 0.0017

p = 1.4 1.118± 0.0038 1.097± 0.0021 1.072± 0.0019 1.058± 0.0019

p = 1.6 1.115± 0.0033 1.093± 0.0023 1.071± 0.0016 1.058± 0.0009

p = 2 1.106± 0.0023 1.091± 0.0017 1.071± 0.0013 1.057± 0.0021

p = 6 1.026± 0.0057 1.042± 0.0014 1.051± 0.0021 1.053± 0.0032

Table 5: Simulated mean values, at optimal levels, of H(k)/ξ ≡ L1(k)/ξ, CH(k)/ξ and Lp(k)/ξ, p = 1(0.2)1.6, 2 and 6, for Fréchet

underlying parent, together with 95% confidence intervals

n 100 200 500 1000

CH 0.982± 0.0030 0.986± 0.0395 0.995± 0.0016 0.998± 0.0026

p = 1 (H) 1.109± 0.0027 1.085± 0.0028 1.063± 0.0013 1.049± 0.0035

p = 1.2 1.099± 0.0033 1.081± 0.0026 1.059± 0.0012 1.047± 0.0014

p = 1.4 1.095± 0.0025 1.078± 0.0034 1.057± 0.0010 1.046± 0.0009

p = 1.6 1.094± 0.0020 1.076± 0.0020 1.057± 0.0012 1.046± 0.0006

p = 2 1.090± 0.0014 1.075± 0.0011 1.057± 0.0007 1.046± 0.0014

p = 6 0.904± 0.0015 0.954± 0.0012 1.000± 0.0008 1.020± 0.0017
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Table 6: Simulated mean values, at optimal levels, of H(k) ≡ L1(k), CH(k) and Lp(k), p = 2(1)6, 8, 10 and 15, for Student tν

underlying parents with ν = 4, 3 and 2, together with 95% confidence intervals

n 100 200 500 1000

Student t4 parent (ξ = 0.25, ρ = −0.5)

p = 1 (H) 0.360± 0.0014 0.339± 0.0042 0.315± 0.0027 0.306± 0.0022

CH 0.312± 0.0027 0.310± 0.0014 0.300± 0.0020 0.295± 0.0011

p = 2 0.297± 0.0034 0.301± 0.0016 0.297± 0.0016 0.292± 0.0011

p = 3 0.265± 0.0038 0.275± 0.0012 0.282± 0.0016 0.283± 0.0013

p = 4 0.253± 0.0026 0.261± 0.0013 0.269± 0.0008 0.272± 0.0009

p = 5 0.251± 0.0022 0.255± 0.0009 0.260± 0.0005 0.264± 0.0006

p = 6 0.247± 0.0004 0.252± 0.0009 0.256± 0.0004 0.259± 0.0003

p = 8 0.240± 0.0049 0.249± 0.0003 0.252± 0.0004 0.254± 0.0002

p = 10 0.204± 0.0068 0.242± 0.0023 0.250± 0.0003 0.252± 0.0004

p = 15 0.141± 0.0049 0.176± 0.0048 0.220± 0.0018 0.242± 0.0018

Student t3 parent, (ξ = 1/3, ρ = −2/3)

p = 1 (H) 0.441± 0.0046 0.416± 0.0035 0.394± 0.0026 0.385± 0.0018

CH 0.361± 0.0058 0.377± 0.0027 0.369± 0.0009 0.364± 0.0011

p = 2 0.390± 0.0050 0.387± 0.0027 0.380± 0.0010 0.375± 0.0012

p = 3 0.360± 0.0022 0.367± 0.0014 0.371± 0.0010 0.370± 0.0013

p = 4 0.344± 0.0019 0.353± 0.0012 0.360± 0.0011 0.363± 0.0011

p = 5 0.338± 0.0018 0.343± 0.0010 0.350± 0.0005 0.355± 0.0008

p = 6 0.327± 0.0041 0.338± 0.0005 0.344± 0.0005 0.348± 0.0005

p = 8 0.268± 0.0064 0.324± 0.0039 0.337± 0.0006 0.340± 0.0003

p = 10 0.222± 0.0056 0.277± 0.0065 0.328± 0.0011 0.335± 0.0004

p = 15 0.152± 0.0040 0.1945± 0.0049 0.241± 0.0035 0.272± 0.0028

Student t2 parent, (ξ = 0.5, ρ = −1)

p = 1 (H) 0.602± 0.0069 0.578± 0.0040 0.556± 0.0019 0.544± 0.0015

CH 0.471± 0.0095 0.505± 0.0034 0.512± 0.0019 0.507± 0.0009

p = 2 0.563± 0.0012 0.558± 0.0020 0.546± 0.0008 0.537± 0.0005

p = 3 0.538± 0.0019 0.544± 0.0012 0.540± 0.0008 0.534± 0.0007

p = 4 0.515± 0.0011 0.530± 0.0015 0.533± 0.0011 0.529± 0.0009

p = 5 0.467± 0.0077 0.514± 0.0013 0.524± 0.0013 0.524± 0.0008

p = 6 0.412± 0.0071 0.479± 0.0059 0.516± 0.0008 0.519± 0.0006

p = 8 0.329± 0.0061 0.394± 0.0052 0.467± 0.0050 0.501± 0.0033

p = 10 0.271± 0.0053 0.330± 0.0047 0.402± 0.0050 0.442± 0.0046

p = 15 0.186± 0.0038 0.230± 0.0035 0.288± 0.0041 0.325± 0.0040
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5.1.2 RMSEs and relative efficiency indicators at optimal levels

We have computed the Hill estimator, in (1.9) whenever p = 1, at the simulated value of

k0|1 := arg mink RMSE
(
L1(k)

)
, the simulated optimal k in the sense of minimum RMSE. Such

an estimator is denoted L0|1. We have also compute L0|p, the estimator Lp computed at the

simulated value of k0|p := arg mink RMSE
(
Lp(k)

)
. The simulated indicators are

REFFp|1 :=
RMSE

(
L0|1
)

RMSE
(
L0|p
) . (5.1)

A similar indicator has also been computed for the CH EVI-estimator, and as mentioned in

Remark 9, the higher these indicators are, the better the associated EVI-estimators perform,

comparatively to H0 = L0|1.

Again as an illustration of the results obtained, we present Tables 7–12. In the first row, we

provide the RMSE of L0|1, so that we can easily recover the RMSE of all other estimators L0|p.

The following rows provide the REFF indicators of CH and REFF
p|1 in (5.1), for the same Lp

EVI-estimators considered in the equivalent tables of Section 5.1.1. A similar mark (underlined

and bold) is used for the highest REFF indicator.

Remark 14. We now provide a few comments related with the REFF-indicators:

• For all simulated models but the Fréchet (independently of ξ) and all the simulated models

with ξ = 1, the new Lp EVI-estimators are clearly able to outperform the MVRB EVI-

estimators.

• The values of p associated with the highest efficiency are higher than expected, and not

in agreement with the theoretical results, certainly due to the non-consistency of the Lp-

statistics as p = +∞.
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Table 7: Simulated RMSE of H (first row) and REFF-indicators of CH(k) and Lp(k), p = 1.5, 2(2)10 and 15, for EVξ underlying

parents, ξ = 0.1, 0.25 and 0.5, together with 95% confidence intervals

n 100 200 500 1000

EVξ parent, ξ = 0.1

RMSE0(H) 0.268± 0.2186 0.216± 0.1757 0.174± 0.1392 0.151± 0.1180

CH 1.245± 0.0050 1.140± 0.0027 1.070± 0.0019 1.045± 0.0015

p = 1.5 1.221± 0.0019 1.209± 0.0022 1.196± 0.0024 1.188± 0.0034

p = 2 1.445± 0.0037 1.422± 0.0040 1.399± 0.0050 1.383± 0.0062

p = 4 2.948± 0.0134 2.949± 0.0135 2.899± 0.0150 2.804± 0.0165

p = 6 5.457± 0.0404 5.005± 0.0302 4.384± 0.0229 4.029± 0.0350

p = 8 7.206± 0.0411 6.362± 0.0327 5.599± 0.0273 5.158± 0.0277

p = 10 8.737± 0.0514 7.744± 0.0406 6.837± 0.0349 6.302± 0.0343

p = 15 12.312± 0.0740 11.116± 0.0474 9.933± 0.0513 9.163± 0.0510

EVξ parent, ξ = 0.25

RMSE0(H) 0.246± 0.2154 0.200± 0.1710 0.157± 0.1385 0.133± 0.1200

CH 1.328± 0.0108 1.237± 0.0056 1.171± 0.0042 1.130± 0.0031

p = 1.5 1.245± 0.0039 1.202± 0.0048 1.158± 0.0028 1.135± 0.0034

p = 2 1.473± 0.0077 1.369± 0.0087 1.268± 0.0057 1.220± 0.0063

p = 4 2.532± 0.0183 2.198± 0.0149 1.863± 0.0133 1.663± 0.0146

p = 6 3.506± 0.0331 3.036± 0.0208 2.542± 0.0226 2.236± 0.0295

p = 8 4.382± 0.0285 3.825± 0.0227 3.197± 0.0222 2.798± 0.0233

p = 10 5.093± 0.0347 4.569± 0.0267 3.850± 0.0269 3.365± 0.0268

p = 15 3.560± 0.1549 4.734± 0.1575 5.172± 0.0347 4.680± 0.0364

EVξ parent, ξ = 0.5

RMSE0(H) 0.256± 0.2059 0.202± 0.1667 0.151± 0.1419 0.122± 0.1293

CH 1.492± 0.0258 1.501± 0.0097 1.476± 0.0059 1.452± 0.0059

p = 1.5 1.183± 0.0029 1.149± 0.0033 1.117± 0.0029 1.099± 0.0026

p = 2 1.295± 0.0055 1.226± 0.0057 1.163± 0.0045 1.132± 0.0044

p = 4 1.787± 0.0141 1.539± 0.0125 1.308± 0.0096 1.193± 0.0105

p = 6 2.324± 0.0269 1.974± 0.0177 1.582± 0.0157 1.366± 0.0202

p = 8 2.119± 0.0696 2.264± 0.0187 1.888± 0.0149 1.602± 0.0155

p = 10 1.531± 0.0458 1.728± 0.0488 2.012± 0.0322 1.831± 0.0159

p = 15 0.976± 0.0165 0.931± 0.0152 0.937± 0.0176 0.981± 0.0156
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Table 8: Simulated RMSE of H (first row) and REFF-indicators of CH(k) and Lp(k), p = 2(2)10 and 15, for GPξ underlying

parents, ξ = 0.1, 0.25 and 0.5, together with 95% confidence intervals

n 100 200 500 1000

GPξ parent, ξ = 0.1

RMSE0(H) 0.259± 0.1606 0.213± 0.1258 0.172± 0.0950 0.150± 0.0764

CH 1.100± 0.0011 1.061± 0.0008 1.032± 0.0006 1.023± 0.0012

p = 2 1.433± 0.0068 1.415± 0.0054 1.394± 0.0109 1.375± 0.0095

p = 4 2.919± 0.0226 2.936± 0.0156 2.889± 0.0288 2.786± 0.0270

p = 6 5.338± 0.0446 4.946± 0.0278 4.347± 0.0451 3.991± 0.0337

p = 8 7.038± 0.0564 6.308± 0.0425 5.564± 0.0488 5.126± 0.0436

p = 10 8.516± 0.0521 7.693± 0.0545 6.793± 0.0594 6.263± 0.0506

p = 15 12.205± 0.0701 11.110± 0.0938 9.883± 0.0767 9.104± 0.0721

GPξ parent, ξ = 0.25

RMSE0(H) 0.237± 0.1724 0.195± 0.1380 0.154± 0.1074 0.131± 0.0887

CH 1.149± 0.0057 1.117± 0.0042 1.088± 0.0049 1.069± 0.0030

p = 2 1.447± 0.0103 1.350± 0.0114 1.262± 0.0117 1.214± 0.0103

p = 4 2.445± 0.0182 2.157± 0.0171 1.840± 0.0218 1.649± 0.0182

p = 6 3.379± 0.0266 2.965± 0.0253 2.498± 0.0256 2.205± 0.0213

p = 8 4.298± 0.0340 3.768± 0.0354 3.154± 0.0306 2.768± 0.0248

p = 10 5.186± 0.0508 4.564± 0.0422 3.806± 0.0344 3.330± 0.0291

p = 15 7.091± 0.0721 6.415± 0.0595 5.405± 0.0425 4.724± 0.0356

GPξ parent, ξ = 0.5

RMSE0(H) 0.239± 0.1914 0.190± 0.1648 0.1444± 0.1408 0.118± 0.1259

CH 1.423± 0.0087 1.380± 0.0082 1.339± 0.0069 1.302± 0.0105

p = 2 1.271± 0.0083 1.209± 0.0062 1.160± 0.0081 1.129± 0.0076

p = 4 1.703± 0.0185 1.484± 0.0195 1.288± 0.0169 1.182± 0.0152

p = 6 2.232± 0.0254 1.883± 0.0267 1.534± 0.0222 1.333± 0.0198

p = 8 2.754± 0.0310 2.309± 0.0331 1.842± 0.0250 1.566± 0.0416

p = 10 3.187± 0.0360 2.720± 0.0371 2.163± 0.0274 1.820± 0.0471

p = 15 3.021± 0.0237 3.108± 0.0385 2.798± 0.0291 2.424± 0.0618
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Table 9: Simulated RMSE of H (first row) and REFF-indicators of CH(k) and Lp(k), p = 1.2(0.2)1.6, 2 and 6, for EV1 underlying

parents, together with 95% confidence intervals

n 100 200 500 1000

RMSE0(H) 0.314± 0.2292 0.239± 0.2077 0.170± 0.1967 0.132± 0.1938

CH 0.814± 0.1168 1.182± 0.0230 1.410± 0.0212 1.678± 0.0198

p = 1.2 1.071± 0.0037 1.060± 0.0036 1.052± 0.0014 1.045± 0.0019

p = 1.4 1.114± 0.0061 1.093± 0.0060 1.078± 0.0030 1.066± 0.0030

p = 1.6 1.142± 0.0082 1.112± 0.0077 1.089± 0.0039 1.073± 0.0041

p = 2 1.176± 0.0059 1.127± 0.0062 1.084± 0.0035 1.062± 0.0042

p = 6 1.074± 0.0230 1.073± 0.0156 1.008± 0.0100 0.914± 0.0096

Table 10: Simulated RMSE of H (first row) and REFF-indicators of CH(k) and Lp(k), p = 1.2(0.2)1.6, 2 and 6, for GP1 underlying

parents, together with 95% confidence intervals

n 100 200 500 1000

RMSE0(H) 0.266± 0.2783 0.205± 0.2673 0.147± 0.2604 0.115± 0.4072

CH 1.982± 0.0164 2.126± 0.0175 2.427± 0.0177 2.685± 0.0439

p = 1.2 1.064± 0.0032 1.057± 0.0022 1.047± 0.0020 1.043± 0.0026

p = 1.4 1.101± 0.0042 1.087± 0.0029 1.069± 0.0038 1.061± 0.0036

p = 1.6 1.124± 0.0059 1.102± 0.0038 1.078± 0.0046 1.065± 0.0046

p = 2 1.147± 0.0079 1.110± 0.0058 1.073± 0.0059 1.055± 0.0102

p = 6 1.449± 0.0212 1.219± 0.0198 0.990± 0.0153 0.872± 0.0164

Table 11: Simulated RMSE of H/ξ (first row) and REFF-indicators of CH(k) and Lp(k) (independent on ξ), p = 1.2(0.2)1.6, 2

and 6, for Fréchet underlying parents, together with 95% confidence intervals

n 100 200 500 1000

RMSE0(H) 0.212± 0.2373 0.163± 0.2272 0.117± 0.2189 0.091± 0.4484

CH 1.257± 0.0072 1.237± 0.1591 1.337± 0.0080 1.456± 0.0101

p = 1.2 1.057± 0.0022 1.048± 0.0017 1.043± 0.0016 1.041± 0.0017

p = 1.4 1.086± 0.0030 1.071± 0.0037 1.061± 0.0026 1.056± 0.0025

p = 1.6 1.099± 0.0044 1.080± 0.0048 1.065± 0.0039 1.058± 0.0024

p = 2 1.103± 0.0046 1.074± 0.0056 1.049± 0.0033 1.038± 0.0041

p = 6 0.966± 0.0071 0.876± 0.0100 0.776± 0.0065 0.722± 0.0080
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Table 12: Simulated RMSE of H (first row) and REFF-indicators of CH(k) and Lp(k), p = 2(1)6, 8, 10 and 15, for Student-tν

underlying parents, ν = 4, 3, 2 (ξ = 1/ν), together with 95% confidence intervals

n 100 200 500 1000

Student t4 parent, (ξ = 0.25, ρ = −0.5)

RMSE0(H) 0.182± 0.5069 0.143± 0.4256 0.106± 0.3561 0.086± 0.3174

CH 1.395± 0.0951 1.400± 0.0172 1.360± 0.0097 1.325± 0.0108

p = 2 1.423± 0.0137 1.316± 0.0111 1.229± 0.0112 1.185± 0.0091

p = 3 1.814± 0.0191 1.581± 0.0170 1.37± 0.0237 1.268± 0.0178

p = 4 2.211± 0.0208 1.887± 0.0191 1.557± 0.0312 1.385± 0.0240

p = 5 2.593± 0.0246 2.200± 0.0223 1.777± 0.0359 1.540± 0.0274

p = 6 2.939± 0.0265 2.510± 0.0271 2.009± 0.0383 1.717± 0.0302

p = 8 3.365± 0.0501 3.054± 0.0324 2.473± 0.0423 2.090± 0.0344

p = 10 2.824± 0.1637 3.327± 0.0452 2.883± 0.0425 2.459± 0.0383

p = 15 1.605± 0.0568 1.780± 0.0818 2.438± 0.0559 2.837± 0.0440

Student t3 parent, (ξ = 1/3, ρ = −2/3)

RMSE0(H) 0.189± 0.4864 0.145± 0.4081 0.105± 0.3414 0.084± 0.3027

CH 1.431± 0.0802 1.511± 0.0133 1.551± 0.0126 1.569± 0.0115

p = 2 1.347± 0.0084 1.259± 0.0082 1.183± 0.0090 1.136± 0.0083

p = 3 1.626± 0.0148 1.429± 0.0170 1.257± 0.0161 1.162± 0.0147

p = 4 1.925± 0.0159 1.636± 0.0230 1.358± 0.0203 1.205± 0.0193

p = 5 2.208± 0.0142 1.862± 0.0259 1.495± 0.0227 1.283± 0.0224

p = 6 2.420± 0.0220 2.083± 0.0280 1.652± 0.0251 1.389± 0.0244

p = 8 2.077± 0.0906 2.364± 0.0372 1.965± 0.0284 1.634± 0.0264

p = 10 1.534± 0.0555 1.891± 0.1020 2.13± 0.0279 1.860± 0.0282

p = 15 1.026± 0.0209 1.013± 0.0308 1.059± 0.0332 1.166± 0.0359

Student t2 parent, (ξ = 0.5, ρ = −1)

RMSE0(H) 0.204± 0.4496 0.153± 0.3788 0.108± 0.3183 0.084± 0.2830

CH 1.045± 0.1172 1.397± 0.0126 1.694± 0.00247 1.951± 0.0214

p = 1.2 1.089± 0.0020 1.072± 0.0025 1.060± 0.0021 1.054± 0.0016

p = 1.4 1.146± 0.0032 1.11± 0.0035 1.095± 0.0032 1.085± 0.0023

p = 1.6 1.189± 0.0041 1.148± 0.0040 1.115± 0.0047 1.102± 0.0031

p = 2 1.257± 0.0069 1.188± 0.0062 1.136± 0.0065 1.117± 0.0045

p = 3 1.412± 0.0127 1.266± 0.0118 1.162± 0.0115 1.125± 0.0081

p = 4 1.576± 0.0171 1.368± 0.0167 1.204± 0.0155 1.144± 0.0114

p = 5 1.636± 0.0371 1.482± 0.0186 1.270± 0.0190 1.185± 0.0140

p = 6 1.463± 0.0513 1.513± 0.0227 1.344± 0.0206 1.240± 0.0159

p = 8 1.067± 0.0337 1.124± 0.0308 1.288± 0.0376 1.319± 0.0138

p = 10 0.853± 0.0211 0.830± 0.0188 0.897± 0.0307 0.978± 0.0333

p = 15 0.643± 0.0104 0.557± 0.0078 0.495± 0.0093 0.463± 0.0090
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5.1.3 Visualization of a few tables above

For a better visualization of tables in Section 5.1.1, we present Figures 12-13, respectively asso-

ciated with EV0.25 and Student-t4 underlying parents.
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Figure 12: Mean values at optimal levels, as a function of the sample size n, and for an EV0.25 underlying

parent
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Figure 13: Mean values at optimal levels, as a function of the sample size n, and for a Student t4

underlying parent

Figures 14–15 are associated with the results in Section 5.1.2, and for the same parents as

Figures 12–13.
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Figure 14: REFF-indicators at optimal levels, as a function of the sample size n, and for an EV0.25

underlying parent
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Figure 15: REFF-indicators at optimal levels, as a function of the sample size n, and for a Student t4

underlying parent

6 An adaptive choice of (p, k)

A reasonably sophisticated algorithm, that has proved to work properly in many situations,

including the choice of (p, k) in the MOp EVI-estimation, is the double-bootstrap algorithm. The

basic framework for such algorithm is next provided, but such an algorithm needs modifications

to lead to large values of p, the ones that have revealed to be the most adequate ones for an

efficient estimation of values of ξ close to zero.
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For the new class of Lp EVI-estimators Lp(k), in (1.9),

k0|p(n) = arg min
k

MSE(Lp(k)) = kA|p(n)(1 + o(1)), (6.1)

with

kA|p(n) := arg min
k

AMSE
(
Lp(k)

)
. (6.2)

For any admissible p, and provided that we can assure the asymptotic normality of the estimator

under play, i.e. if p ≥ 1, the bootstrap methodology can thus enable us to consistently estimate the

optimal sample fraction (OSF), k0|p(n)/n, with k0|p(n) given in (6.1), on the basis of a consistent

estimator of kA|p(n), in (6.2), in a way similar to the one used in Draisma et al. (1999), Danielson

et al. (2001) and Gomes and Oliveira (2001), for the classical adaptive Hill EVI estimation, in

Brilhante et al. (2013), for the MOp EVI-estimator, and in Gomes et al. (2011b, 2012b, 2016b),

for second-order reduced-bias estimation. See also Caeiro and Gomes (2015b) for a review on

OSF-estimation. With the notation bxc for the integer part of x, we use again the auxiliary

statistics

Tk,n ≡ T (k|Lp) ≡ Tk,n|p := Lp(bk/2c)− Lp(k), k = 2, . . . , n− 1, (6.3)

which converge in probability to zero, for any intermediate k, and have an asymptotic behaviour

strongly related with the asymptotic behaviour of Lp(k). Indeed, under the aforementioned

second-order framework in (2.2), we get, for all p ≥ 1,

T (k|Lp)
d
=

σLp Z
(p)
k√
k

+ bLp(2
ρ − 1) A(n/k)(1 + op(1)),

with Z
(p)
k asymptotically standard normal, and

(
σLp , bLp

)
=
(
σLp(ξ), bLp(ρ)

)
given in (3.5).

Consequently, denoting k0|T (n) := arg mink MSE(Tk,n), we have

k0|p(n) = k0|T (n)× (1− 2ρ)
2

1−2ρ (1 + o(1)). (6.4)

Given the random sample Xn = (X1, . . . , Xn) from any unknown model F , and the functional

in (6.3), Tk,n =: φk(Xn), 1 < k < n, consider for any n1 = O(n1−ε), 0 < ε < 1, the bootstrap

sample X∗n1
= (X∗1 , . . . , X

∗
n1

), from the model

F ∗n(x) =
1

n

n∑
i=1

I[Xi≤x],
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the empirical CDF associated with the available sample, Xn. Next, associate to the bootstrap

sample, the corresponding bootstrap auxiliary statistic, T ∗k1,n1
:= φk1(X

∗
n1

), 1 < k1 < n1. Then,

with k∗0|T (n1) = arg mink1 MSE
(
T ∗k1,n1

)
,

k∗0|T (n1)

k0|T (n)
=
(n1

n

)− 2ρ
1−2ρ

(1 + o(1)).

Consequently, for another sample size, n2 = bn2
1/nc+ 1, we have

(
k∗0|T (n1)

)2
/k∗0|T (n2) = k0|T (n)(1 + o(1)), as n→∞. (6.5)

On the basis of (6.5), we are now able to first consistently estimate k0|T , and next k0|p through

(6.4), on the basis of any estimate ρ̂ of the second-order parameter ρ. With k̂∗0|T denoting the

sample counterpart of k∗0|T , ρ̂ an adequate ρ-estimate, and cρ = (1− 2ρ)
2

1−2ρ , we thus have the

k0-estimate

k̂∗0|p ≡ k̂∗0|p(n;n1) := min
(
n− 1,

⌊
cρ̂ (k̂∗0|T (n1))2/k̂∗0|T (bn2

1/nc+ 1)
⌋

+ 1
)
. (6.6)

The adaptive estimate of ξ is then given by

L∗p ≡ L∗p,n,n1|T := Lp(k̂
∗
0|p(n;n1)). (6.7)

6.1 A double-bootstrap algorithm for an adaptive Lp EVI-estimation

We now proceed with the description of an algorithm for the adaptive estimation of ξ. In Steps 2,

3 and 4, we reproduce the algorithm provided in Gomes and Pestana (2007b) for the estimation

of the second-order parameters β and ρ, already tested in several articles on a related subject.
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Algorithm 6.1.

Step 1 Given an observed sample (x1, . . . , xn), compute, for the tuning parameters τ = 0 and

τ = 1, the observed values of ρ̂τ (k), the most simple class of estimators in Fraga Alves et

al. (2003). Such estimators have the functional form

ρ̂τ (k) := min
(
0, 3(W

(τ)
k,n − 1)/(W

(τ)
k,n − 3)

)
, (6.8)

dependent on the statistics

W
(0)
k,n :=

ln
(
M

(1)
k,n

)
− 1

2
ln
(
M

(2)
k,n/2

)
1
2

ln
(
M

(2)
k,n/2

)
− 1

3
ln
(
M

(3)
k,n/6

) , W
(1)
k,n :=

M
(1)
k,n −

(
M

(2)
k,n/2

)1/2

(
M

(2)
k,n/2

)1/2

−
(
M

(3)
k,n/6

)1/3
,

where M
(j)
k,n, j = 1, 2, 3, are given in (2.7).

Step 2 Consider {ρ̂τ (k)}k∈K, with K =
(
bn0.995c, bn0.999c

)
, compute their median, denoted χτ ,

and compute Iτ :=
∑

k∈K (ρ̂τ (k)− χτ )2, τ = 0, 1. Next choose the tuning parameter τ ∗ = 0

if I0 ≤ I1; otherwise, choose τ ∗ = 1.

Step 3 Work with ρ̂ ≡ ρ̂τ∗ = ρ̂τ∗(k1) and β̂ ≡ β̂τ∗ := β̂ρ̂τ∗ (k1), with k1 = bn0.999c, being β̂ρ̂(k)

the estimator in Gomes and Martins (2002), given by

β̂ρ̂(k) :=

(
k

n

)ρ̂
dk(ρ̂) Dk(0)−Dk(ρ̂)

dk(ρ̂) Dk(ρ̂)−Dk(2ρ̂)
,

dependent on the estimator ρ̂ = ρ̂τ∗(k1), and where, for any α ≤ 0,

dk(α) :=
1

k

k∑
i=1

(i/k)−α and Dk(α) :=
1

k

k∑
i=1

(i/k)−α Ui,

with Ui = i
(

lnXn−i+1:n − lnXn−i:n
)
, 1 ≤ i ≤ k < n, the scaled log-spacings.

Step 4 For p = 1(0.1)10, compute Lp(k), k = 1, 2, . . . , n− 1.

Step 5 Next, consider sub-sample sizes n1 = bnbc, b = 0.925(0.001)0.999, n2 = bn2
1/nc+ 1.

Step 6 For l from 1 until B = 250 (number of bootstrap iterations), generate independently,

from the empirical CDF F ∗n(x) = 1
n

∑n
i=1 I{Xi≤x} associated with the observed sample, the

bootstrap samples (x∗1, . . . , x
∗
n2

) and (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

), of sizes n2 and n1, respec-

tively.
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Step 7 Denoting T ∗k,n the bootstrap counterpart of Tk,n, in (6.3), obtain, for 1 ≤ l ≤ B, t∗k,n1,l
,

1 < k < n1, t∗k,n2,l
, 1 < k < n2, the observed values of the statistic T ∗k,ni, i = 1, 2, and

compute, for i = 1, 2 and k = 2, . . . , ni − 1, MSE∗(ni, k) =
B∑
l=1

(
t∗k,ni,l

)2
/B.

Step 8 Obtain k̂∗0|T (ni) := arg min1<k<ni MSE∗(ni, k), i = 1, 2, and return to Step 6 if

k̂∗0|T (n2) > k̂∗0|T (n1).

Step 9 Compute k̂∗0|p ≡ k̂∗0|p(n;n1), given in (6.6).

Step 10 Compute L∗p ≡ L∗p,n,n1|T , given in (6.7), and the MSE-estimate

M̂SE
∗
p ≡ M̂SE

∗
p(n1) ≡ ˆMSE(k̂∗0|p|L∗p)

:=
σ2

Lp
(L∗p)

k̂∗0|p
+

(
L∗pβ̂

√
Γ(2p− 1)

(
n/k̂∗0|p

)ρ̂
Γ(p)

)2

=: (σ̂∗0p)
2 + (b̂∗0p)

2, (6.9)

where σLp(ξ) has been defined in (3.5).

Step 11 Compute n∗1(p) := arg minn1 M̂SE
∗
p(n1), with M̂SE

∗
p(n1) obtained in Step 10, and

p∗min := arg minn1(p), with the values n1 = n1(p) given in Step 5.

Step 12 Consider the adaptive threshold estimate k̂∗∗0 := k̂0|p∗min(n;n∗1), n∗1 := n1(p∗min), and the

final EVI-estimate L∗∗ := L∗p∗min = L∗p,n,n∗1|T
.

Remark 15. For small values of ξ, this ‘parametric’ method, based on asymptotic variance and

asymptotic dominant component of bias of the Lp EVI-estimators, is not leading to the large

values of p associated with minimum simulated RMSE. It is instead leading to values close to

the optimal asymptotic p, denoted p
M|L in Section 4.1. We thus think sensible to try any kind of

non-parametric approach, out of the scope of this article. Note however that we have still tried

the replacement of Steps 7–10 by:

Step 7’ Denoting T ∗k,n the bootstrap counterpart of Tk,n, in (6.3), obtain, for 1 ≤ l ≤ B, t∗k,n1,l
,

1 < k < n1, t∗k,n2,l
, 1 < k < n2, the observed values of the statistic T ∗k,ni, i = 1, 2, and compute,

for i = 1, 2 and k = 2, . . . , ni − 1,

B∗i,k =
1

B

B∑
l=1

t∗k,ni,l, M∗i,k =
1

B

B∑
l=1

(
t∗k,ni,l

)2
.

41



Compute the bootstrap MSE-estimate,

M̂SE
∗
p ≡ M̂SE

∗
p(n1) =

M∗
1,k +M∗

2,k −
(
(B∗1,k)

2 + (B∗2,k)
2
)

2
+

( (
B1,k

)2(
2ρ̂ − 1

)
B∗2,k

)2

.

However, the results obtained were not far away from the ones obtained with Algorithm 6.1

Remark 16. For any p ≥ 1, and with k̂∗0|p and (σ∗0p, b
∗
0p) given in (6.6) and (6.9), respectively, the

RV
(
Lp(k̂

∗
0|p)− ξ− b∗0p

)
/σ∗0p is approximately N (0, 1). We can then get approximate 100(1−α)%

confidence intervals (CIs) for ξ, given by(
Lp(k̂

∗
0|p)− b∗0p − χ1−α/2σ

∗
0p, Lp(k̂

∗
0|p)− b∗0p + χ1−α/2σ

∗
0p

)
,

where χp denotes the quantile of probability p of a standard normal CDF.

Remark 17. We further make the following general comments:

(i) The value of n must be replaced by n0 :=
∑n

i=1 I[Xi>0], the number of positive elements in

the sample, whenever there are negative elements in the sample. A similar comment applies

to the bootstrap sample sizes n1 and n2.

(ii) As already mentioned in several papers essentially related with bias reduction, in Step 2 of

the algorithm we are led in almost all situations to the tuning parameter τ ∗ = 0 whenever

−1 ≤ ρ < 0 and τ ∗ = 1, otherwise. We thus claim again for the relevance of the choice

τ = 0, in (6.8), due to the importance of the region |ρ| ≥ 1.

(iv) In Algorithm 6.1 above, we have also dealt with the choice of the tuning parameter n1

associated with the bootstrap methodology, but again, the method is only moderately depen-

dent on the choice of the nuisance parameter n1. This enhances the practical value of the

method. Moreover, although aware of the need of n1 = o(n), it seems that, once again, we

get good results up till n.

(v) The Monte-Carlo procedure in the Steps 6–12 of Algorithm 6.1 can be replicated, if

we want to associate standard bootstrap errors to the OSF and to the EVI-estimates. The

value of B can also be adequately chosen.

(vi) We would like to stress again that the use of the random sample of size n2, (x∗1, . . . , x
∗
n2

),

and of the extended sample of size n1, (x∗1, . . . , x
∗
n2
, x∗n2+1, . . . , x

∗
n1

), leads us to increase the
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precision of the result with a smaller B. Indeed, if we had generated the sample of size n1

independently of the sample of size n2, we would have got a wider confidence interval for

the EVI, should we have kept the same value for B. This is quite similar to the use of

the simulation technique of “Common Random Numbers” in comparison algorithms, when

we want to decrease the variance of a final answer to z = y1 − y2, inducing a positive

dependence between y1 and y2.

7 Appendix

Proof. (Theorem 5). As we have seen before in Section 1, the law of large numbers enables us

to say the statistics in (1.9) are consistent for the estimation of ξ ≥ 0 for all p > 0. With Y

denoting again a unit Pareto RV, and working under the second-order framework in (2.2), we

can write

1

k

k∑
i=1

(
ln
Xn−i+1:n

Xn−k:n

)p
=

1

k

k∑
i=1

(
ln
U(Yn−i+1:n)

U(Yn−k:n)

)p
=

1

k

k∑
i=1

(
ξ lnYi + A(n/k) (Y ρ

i − 1)/ρ+ op(A(n/k))
)p

= ξp
1

k

k∑
i=1

(lnYi)
p +

pξp−1A(n/k)

ρ

1

k

k∑
i=1

(lnYi)
p−1 (Y ρ

i − 1) (1 + op(1)).

Consequently, since

1

k

k∑
i=1

(lnYi)
p−1 (Y ρ

i − 1)
p−→

n→∞
Γ(p)

[
(1− ρ)−p − 1

]
,

we can write

M (p)
n (k)

d
= ξp

1

k

k∑
i=1

Ep
i +

ξp−1Γ(p+ 1)
[
(1− ρ)−p − 1

]
A(n/k)

ρ
+ op(A(n/k)).

Let P
(p)
n :=

√
k
(

1
k

∑k
i=1 E

p
i − Γ(p+ 1)

)
. Then (3.7), and the second-order structure of {P (p)

n }
follows, with Var

(
P

(p)
n

)
= Γ(2p+ 1)− Γ2(p+ 1). We can thus write

M (p)
n (k)

d
= ξpΓ(p+ 1)

{
1 +

P
(p)
n

Γ(p+ 1)
√
k

+
(1− ρ)−p − 1

ξρ
A(n/k)(1 + op(1))

}
,
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and, for p ≥ 1,

M
(p)
n (k)

pM
(p−1)
n (k)

d
= ξ

{
1 +

P
(p)
n

Γ(p+ 1)
√
k
− P

(p−1)
n

Γ(p)
√
k

+
(1− ρ)−p

ξ
A(n/k)(1 + op(1))

}
.

Next note that

Cov
(
P (p−1)
n , P (p)

n

)
= Cov

(
√
k

(
1

k

k∑
i=1

Ep−1
i − Γ(p)

)
,
√
k

(
1

k

k∑
i=1

Ep
i − Γ(p+ 1)

))

= k Cov

(
1

k

k∑
i=1

Ep−1
i ,

1

k

k∑
i=1

Ep
i

)
=

∑k
i=1 Cov

(
Ep−1
i , Ep

i

)
k

= E
(
E2p−1

)
− E

(
Ep−1

)
E
(
Ep
)

= Γ(2p)− Γ(p)Γ(p+ 1).

We thus have

Var

(
P

(p)
n

Γ(p+ 1)
− P

(p−1)
n

Γ(p)

)

=
Γ(2p+ 1)− Γ2(p+ 1)

Γ2(p+ 1)
+

Γ(2p− 1)− Γ2(p)

Γ2(p)
− 2 (Γ(2p)− Γ(p)Γ(p+ 1))

Γ(p)Γ(p+ 1)

=
Γ(2p− 1)

Γ2(p)
=

Γ(2p)

(2p− 1)Γ2(p)
=

(2π)−1/2 22p−1
2 Γ(p)Γ(p+ 1

2
)

(2p− 1)Γ2(p)
=

(2π)−1/2 22p−1
2 Γ(p+ 1

2
)

(2p− 1)Γ(p)

Consequently, we obtain the validity of the asymptotic distributional representation in (3.6),

with
(
bLp , σLp

)
given in (3.5).
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