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Abstract Quite often the only information available to a researcher who wants to perform meta-analysis
syntheses is the reported p-values from different studies. An overview on how to tackle the problem of
combining p-values in order to shed some light on the plausibility of a global null hypothesis is discussed
here. Some recent developments regarding generalized p-values and random p-values are also addressed
for the purpose of combining statistical evidence, as well as the role that mixtures of uniform and Beta(1,2)
or Beta(2,1) can have in the field of Meta-Analysis.

1 Introduction

In the investigation of some issue, eventually by several research teams, testing H0 vs. HA is performed
n times. We assume that those experiments were independently conducted, and hence assuming the null
hypothesis H0 to be true the observed p-values p1, ..., pn are observations of independent replicas P1, ...,Pn
of U _Uni f orm(0,1).

Those several tests can point out to conflicting interpretations, or in some cases be “inconclusive”, i.e.
the observed p-value is non-significant. In fact, the goal of a statistical test is in general to conclude that
there exists evidence to reject the null hypothesis, and there is even a say “to reject the null hypothesis is
a strong decision, to maintain the null hypothesis is a weak decision”; it is well-known that in the absence
of significative p-values the research output isn’t in general published, a source of concern on publication
bias in meta analysis [23]. On the other hand, in most published work, reported p-values are the sole usable
information for future meta analyses.
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Section 2 is a brief overview on combining p-values, either raw or transformed. In Section 3 we discuss
generalized and random p-values, cf. [16, 18], since it is in the nature of scientific research to try to falsify
the null hypothesis, and therefore HA true for some trials should be expected. Obviously, if HA is true, the
Pk are no longer uniform.

In Section 4 we discuss computational inflation of the sample of p-values, using some algebra that,
starting from the available p-values, generates new uniform random variables independent from the initial
sample. Naı̈vely we had expected that sample augmentation would increase power, i.e. more proneness to
reject the null hypothesis if the alternative is true. In fact, the reverse happens: there is a noticeable loss of
power, that we exhibit in Section 4, and partially explain in Section 5.

Even when H0 is true, the reported p-values can be non-uniform if good statistical practice is violated.
For instance, if the result is different from what the experimenter expects, he may decide to repeat the
experiment, and to report the best of the two results — this is, for instance, a possible explanation for
Mendel’s “too good” results disputed by Fisher, cf. [24]. The best of two results will be either the minimum
or the maximum, whose sampling distribution under H0 will be either B(1,2) or Beta(2,1). Therefore when
meta-analysing p-values, it can be expected that the appropriate model is Xm, m ∈ [−2,2],

Xm =

{
U X

1− |m|2
|m|
2

(1)

with U _ Uni f orm(0,1) and X _ Beta(1,2) if m ∈ [−2,0), or X _ Beta(2,1), if m ∈ (0,2]. Section 5
discusses in some depth this family, and some surprising results when its members are used for computa-
tionally augment the sample of p-values.

In the concluding section we comment on questions of sample size, and on the bias that cumulative meta
analysis can cause.

2 Combining p-Values

Meta analysis of p-values has been done much earlier than meta analysis has been recognised as an im-
portant field of statistics [12, 13, 14]; as under H0 the Pk are independent and identically distributed
(iid) uniform random variables, Tippett [26] used the minimum P1:n _ Beta(1,n) and Fisher [11] used
T = −2∑

n
k=1 ln(Pk) _ χ2

2n to test the combined null hypothesis H∗0 : ∀k ∈ {1, ...n} H0,k is true vs. the
composite alternative H∗A : ∃k ∈ {1, ...n} such that H∗A is true.

Since the pioneering results of Tippett and Fisher, several combined tests have been discussed in the
literature, cf. [22, 23], none of them being the best choice in all situations. Fisher’s test is, however, the most
advisable choice in many situations [19, 20], although this choice is by no means consensual. For instance
in the context of social sciences research, Mosteller and Bush [21] clearly prefer to use Stouffer’s method
[25]: denoting by Φ the standard normal distribution function (df), use T = Φ−1(Pk)√

n _
|H∗0

Normal(0,1).

A rational combined procedure should of course be monotone, in the sense that if one set of p-values
p = (p1, ..., pn) leads to rejection of the overall null hypothesis H∗0 , any set of componentwise smaller p-
values p† = (p†

1, ..., p†
n), p†

k ≤ pk, k = 1, ...,n, must also reject H∗0 ; and, in fact, any monotone combined
test procedure is admissible, i.e. provides a most powerful test against some alternative hypothesis for
combining some collection of tests, and is therefore optimal for some combined testing situation whose
goal is to harmonize eventually conflcting evidence, or to pool inconclusive evidence.

Instead of Tippett’s P1:n, any other order statistics Xk:n can be used, [29]; under validity of the null
hypothesis, Xk:n _ Beta(k,n + 1− k). Another statistic that can be used is the the geometric mean Gn
(cf. [22]), whose probability density function (pdf) under validity of the overall null hypothesis has the
simple expression fGn(x) =

n(−nx ln(x))n−1

Γ (n) I(0,1)(x). Therefore the df is
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FGn(x) =
Γ ∗(n,−n ln(x))

Γ (n)
I[0,1)(x)+ I[1,∞)(x)

where Γ ∗(n,z) is the incomplete Gamma function Γ ∗(n,z) =
∫

∞

z xn−1e−xdx.
As

Gn =

(
n

∏
k=1

Uk

)1/n

= exp

[
1
n ln

(
n

∏
k=1

Uk

)]
= exp

(
− X

2n

)
,

with X _ χ2
2n, the 1−α quantile for Gn is easily expressed in terms of the α quantile of χ2

2n:

gn,1−α = e
−

χ2
2n,α
2n .

The geometric mean is clearly preferable to the arithmetic mean since, aside from having a very cumber-
some pdf fPn

(x) = n
Γ (n)

[
∑

n
j=0(−1) j

(n
j

)
(nx− j)n− j I[ k

n ,
k+1

n )(x)
]
I[0,1)(x), the overall test based on the arith-

metic mean isn’t consistent, in the sense that it can fail to reject the overall test null hypothesis although the
result of one of the partial tests is extremely significant.

Fisher [11] and Stouffer [25] are the simplest test statistics using suitable transformations of the Pk;
other transformations of random variables can be used, a popular choice being the logistic transformation

ln
(

Pk
1−Pk

)
_ Logistic(0,1): as T = −∑

n
k=1 ln

(
Pk

1−Pk

)
/
√

n π2(5n+2)
3(5n+4) ≈ t5n+4, reject H∗0 at the significance

level α if T (obs.)> t5n+4,1−α .
From this brief overview, Tippett’s decision rule “reject H∗0 at significance level α if the minimum

observed p-value p1:n < 1− (1−α)1/n”, or using Fisher’s decision rule: “reject H∗0 at significance level
α if −2∑

n
k=1 ln(pk) > χ2

2n,1−α
” are two simple rules illustrating respectively the direct use of the Pk and

using transformed Pk. Moreover, Fisher’s method is often an efficient way of using all the information
available, while Tippett’s test uses only drastically restricted information, and therefore they represent two
extreme cases. For those reasons, in the next sections, we shall use those two tests to assess the results of
computationally augmenting samples to test uniformity.

3 Random and Generalized p-Values

Bayarri and Berger [1], as many other authors, state that “p-values are often perceived as measurements of
the degrees of surprise in the data, relative to a hypothesized model”. In general, the “hypothesized model”
considered is the one indicated in the null hypothesis, but occasionally this is not convenient.

In fact, sometimes there are convincing reasons to think that the true hypothesis is HA — as in the case of
tests combining p-values —, and therefore when performing the test the surprise deals with the alternative.

In recent years, relevant advances on modeling p-values in more general settings than the validity of the
null hypothesis have been made, for instance work on random and on generalized p-values, cf. [27, 28].
The main features of those developments, discussed focusing on meta-analyzing p-values, are presented in
[7].

Most meta-analysis syntheses are done for combining effect sizes from different studies. However, the
pooling of statistical evidence into a common estimate, usually a weighted combination of the individual
effect sizes estimates θ̃k, k = 1, . . . ,n, only makes sense if the null hypothesis of homogeneity, i.e. H0 :
θ1 = . . . = θn = θ , is not rejected. Hartung et al. [16] describe some common methods for combining
effect sizes from different experiments. For example, a standard test for homogeneity of means in meta-
analysis syntheses is Cochran’s asymptotic chi-square test. Unless for some very special cases, e.g. testing
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homogeneity of means for gaussian populations with known variances or a common unknown variance,
these methods rely on approximations.

Finding exact methods whose distributions are free from nuisance parameters when these are present
can be quite challenging, if not impossible, using standard statistical procedures. If nuisance parameters are
involved, the chances of not computing p-values exactly are quite high, and using approximate p-values in
pooling statistical evidence can be a problem.

Tsui and Weerahandi [27] extended the conventional definition of p-value by introducing the concept of
generalized p-value, in order to eliminate the former’s dependence on nuisance parameters. To compute a
generalized p-value a generalized test variable has to be found first, i.e. a random variable T = T (X ;x,θ ,η),
where X = (X1, . . . ,Xn) is a random sample, x= (x1, . . . ,xn) the observed sample, θ the parameter of interest
and η the nuisance parameter (real or vector).

A generalized test variable for the parameter θ has to satisfy three properties: i) the observed value of
T (X ;x,θ ,η), i.e. T (x;x,θ ,η), is free of θ and η ; ii) when θ is specified, the distribution of T (X ;x,θ ,η) is
free of η ; iii) for fixed x and η , P(T ≤ t;θ) is a monotonic function of θ for any given t. Thus, for the right
one-sided test H0 : θ ≤ θ0 vs. HA : θ > θ0, the generalized p-value is given by

pG = P(T (X ;x,θ ,η)≥ T (x;x,θ ,η)|θ = θ0)

which securely won’t depend on η . The advantage of using generalized p values instead of ordinary p
values in testing problems with nuisance parameters, is that the former enables the problems to be solved
exactly.

Another important aspect when dealing with p-values is to recognize that they are conditional on the data
gathered from a particular experiment, i.e. they are the observed value of some test statistic T . As pointed
out by Kulinskaya et al. [18], if we want to compare p-values from different experiments, or combine them
in meta-analysis syntheses, we must deal with p-values as random variables, specially when there is some
evidence that the alternative HA is true.

For the particular case of large values of a continuous test statistic T giving evidence in favor of HA, the
observed p-value is p = 1−F0(t), where t is the observed value of T and F0 denotes the df of T under H0.
Therefore, the random p-value associated with T is, in this case, the random variable P = 1−F0(T ). From
the previous definition it follows immediately that P _ Uni f orm(0,1) under the null hypothesis. On the
other hand, the df of P under some alternative θ is

P
θ
(P≤ p) = 1−Fθ (F−1

0 (1− p)), 0 < p < 1,

where Fθ denotes the df of T under such alternative. So, if there is evidence that H0 is false, the correct
approach to combine statistical evidence should be under HA, not under H0. Taking into consideration these
ideas, Brilhante [7] obtained explicit expressions for the pdf of P related to Fisher’s test statistic, for small
sample sizes, when the alternative to uniformity is the pdf of the random variable defined in (1).

4 Generating Pseudo-p-Values and Loss of Power Using Computationally
Augmented Samples

Aside from the combination of p-values techniques to test the overall composite hypothesis H∗0 vs. H∗A, as
described in Section 2, a test of goodness-of-fit by the standard uniform would settle the matter. However in
meta-analytic syntheses the size n of the p-values sample is in general rather small, and therefore the power
of the test uncomfortably low.
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In 2009, Gomes et al. [15] thought that computationally inflating the set of p-values would increase
power. The algorithms they used to create pseudo-p-values have been, given a starting sample (p1, ..., pn)
of p-values, to compute

• pn+k = min
(

uk
pk
, 1−uk

1−pk
,
)
, k = 1, ..n, where the uk are uniform pseudo-random numbers;

• p2n+k = pk + pn+k−bpk + pn+kc, k = 1, ..n, where the floor function bac denotes the largest integer not
greater than a.

The rationale for that is the following theorem:

Theorem 1. Let U _Uni f orm(0,1) and X with support [0,1] be independent random variables. Then

min
(

U
X
,

1−U
1−X

,

)
=V _Uni f orm(0,1)

with V and X independent;

U +X−bU +Xc=W _Uni f orm(0,1)

with W and X independent.

To the authors surprise, power decreased instead of increasing, thus inflating the sample led to worse
performance. Figure 1, resulting from extensive simulation, shows the decrease of power when the sample
is increased from (p1, ..., pn) to (p1, ..., p2n), and then further increased to (p1, ..., p3n), for some values of
n (the results are for a two-sided test). This unexpected result will be explained in Section 5.

Remark 1: Since high or low p-values are now both considered extreme cases, the two-sided Tippett’s test
statistic is based on the midrange statistic, i.e. Mn = X1:n+Xn:n

2 , whose pdf under uniformity is fMn(x) =
n2n−1( 1

2 −|x−
1
2 |)

n−1 I(0,1)(x). Therefore, Tippett’s decison rule is reject the null hypothesis at significance
level α if Mn(obs)< mn,α/2 or Mn(obs)> mn,1−α/2, where the α quantile for Mn is

mn,α =

{(
21−nα

)1/n
, 0 < α < 1

2

1−
[
21−n(1−α)

]1/n
, 1

2 ≤ α < 1
.

5 Mixtures of Uniform and Beta(1,2) or Beta(2,1) Distributions

One interesting controversy in science arose from Fisher’s suggestion that the results reported by Mendel
on his pioneering research on the mathematics of genetic inheritance were too good to be true. Fisher didn’t
boldly accuse Mendel of cheating, but suggests that he didn’t control properly the integrity of some of his
co-workers. Since there is clear indication in Mendel’s writings that when results from the experience were
too surprising there was a second data collection, and the most conform (with Mendel’s theories) of the
two results was reported. Pires and Branco [24] published an ingenious explanation assuming that there had
been in fact an important proportion of experiments dealt with this way.

Meanwhile, Brilhante, Pestana and co-workers ([15, 4, 5, 23]) investigated a family of random variables
Xm, m ∈ [−2,2], that perfectly fits the situation described. The pdf of Xm is

fXm(x) =
[

1+m
(

x− 1
2

)]
I(0,1)(x) (2)
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Fig. 1 Power function: two-sided test H0 : m = 0 vs. HA : m ∈ [−2,0)∪ (0,2] (solid lines for the Fisher test, dashed line for
the Tippett test; the thinner lines refers to the original n size sample, the medium to the double size sample, the thicker lines to
the 3n size augmented sample)
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(observe that X0 _Uni f orm(0,1), X−2 _ Beta(1,2), and X2 _ Beta(2,1)), that precisely model the sam-
pling distribution of the reported p-values under H0 in the above described circumstance, when the propor-
tion |m|2 of duplicated experiments is known. More complex convex mixtures of Beta(k,1) or of Beta(k, p)
models can arise if the experimenter performs a variable number of experiments, either until he obtains a
p-value that fits his expectations, or attains a predetermined maximum number of experiments.

Observe that Xm models not a generalized or a random p-value, these models arise under true H0 when
there is a dubious experimental behaviour.

What is the effect of the Pk, k = 1, ...,n, being independent replicas of Xm, m 6= 0, instead of iid standard
uniform? The answer is given in the theorem that follows:

Theorem 2. Let Xm1 ,Xm2 be independent random variables with pdf fmi(x) =
[
1+mi

(
x− 1

2

)]
I(0,1)(x),

with mi ∈ [−2,2], i = 1,2. Then
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Vm1,m2 = min
(

Xm1

Xm2

,
1−Xm1

1−Xm2

,

)
= Xm1 m2

6
=


U X2sign(m1 m2)

1− |m1 m2|
12

|m1 m2|
12

.

On the other hand

Wm1,m2 = Xm1 +Xm2 −bXm1 +Xm2c=


U Y

1− |m1 m2|
12

|m1 m2|
12

where Y _ Beta(2,2).

In the convex mixture fVm1 ,m2
(x) =

[
1+ |m1 m2|

6

(
x− 1

2

)]
I(0,1)(x) the mixing coefficient of the uniform

component is 1− |m1 m2|
12 , greater than the uniform mixing components 1− |mi|

6 , i = 1,2, of either Xm1 or
Xm2 . While for Xmi , i = 1,2, the the absolute value of the slope of the “tilting” of the uniform pdf can be as
large as 2, the absolute value of the slope of the pdf of Vm1,m2 will be at most 2

3 .

A similar result applies to fWm1 ,m2
(x) =

[
1− |m1 m2|

12 + |m1 m2|
2 x(1− x)

]
I(0,1)(x). So, both Vm1,m2 and

Wm1,m2 are closer to the uniform than either Xm1 or Xm2 . Observe that, in particular, when m1 = 0 or m2 = 0
(i.e., Xm1 or Xm2 uniform), the result will be uniform.

This and similar results reflect the absorbing behaviour of the uniform when we perform some algebra
using variables with support [0,1], that is a consequence of the maximal entropy property of the standard
uniform among random variables in that class ([4]).

This also explains why the computational inflation of the sample of p-values in Section 4 lowers the
power of uniformity tests. In the worst possible case — using auxiliary uniform pseudo-random numbers
— the generated pseudo-p-values will be uniform, and hence the whole sample will be much more difficult
to distinguish from an uniform sample, even when in fact the alternative hypothesis is true.

6 Further Issues

6.1 Estimation of m

In Section 5 we have assumed that the mixing parameter m in models such as the one discussed in [24]
is known, but in realistic settings this is not so. Estimating m is far from simple, since the usual meth-
ods (maximum likelihood, minimum chi-square, moments) often produce inadequate or even inadmissible
estimates.

A simulation evaluation of quantile regression methods, a method using spacings, regression methods,
and fitting crossed expected values E[Xk(1−X)`] is under progress.

6.2 Generating pseudo-p-values and other ways of testing uniformity

Further algorithms to generate pseudo-p-values can be used. For instance, if U1,U2 are independent replicas

of U _Uni f orm(0,1),
U1:2

U2:2
will be uniform; however, the very sensible question of dependence arises, and

therefore the via we exploit using Theorem 1 and Theorem 2 must be preferred. Johnson et al. [17] (pp.
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313–314) discuss other algorithms to generate directly uniform order statistics and spacings generated in
the random division of the unit interval.

Other ways of investigating uniformity of the p sample of p-values use other computational methods to
inflate information. Brilhante et al. [6] devised a complex Sukhatme’s type algorithm to test uniformity:

Let X = (X1,X2, . . . ,Xn) be a random sample from the absolutely continuous positive random variable X
with pdf fX , and (X1:n,X2:n, . . . ,Xn:n) the corresponding vector of ascending order statistics. For convenience
we assume that left-endpoint αX = 0 and we define X0:n = αX = 0.

The joint pdf of the spacings Sk = Xk:n−Xk−1:n, k = 1, . . . ,n, is

f(S1,S2,...,Sn)(s1,s2, . . . ,sn) = n! f(X1,X2,...,Xn)(s1,s1 + s2, . . . ,s1 + · · ·+ sn)

(sk > 0, k = 1, . . . ,n, and if the right-endpoint ωX is finite, ∑
n
k=1 sk < ωX ; in this case we can consider the

rightmost spacing Sn+1 = ωX −Xn:n, but this can be expressed as a function ωX −∑
n
k=1 Sk). Hence the joint

pdf of the ascending reordering of those n spacings is

f(S1:n,S2:n,...,Sn:n)(y1,y2, . . . ,yn) = (n!)2 f(X1,X2,...,Xn)(y1,y1 + y2, . . . ,y1 + · · ·+ yn) ,

where 0 < y1 < y2 < .. . < yn and ∑
n
k=1 yk < ωX .

Now define
Wk = (n+1− k)(Sk:n−Sk−1:n), k = 1, . . . ,n,

(similar to Sukhatme’s transformation, as defined in David and Nagaraja [8], but applied to ascendingly
ordered spacings) again with the convention S0:n = 0.

The joint pdf of (W1,W2, . . . ,Wn) is

f(W1,W2,...,Wn)(w1,w2, . . . ,wn) = n! f(X1,X2,...,Xn)

(
w1
n , 2w1

n + w2
n−1 , . . . ,w1 + · · ·+wn

)
,

wk > 0, k = 1, . . . ,n, (observe that the k-th argument is

kw1

n
+

(k−1)w2

n−1
+ · · ·+

(k+1− j)w j

n+1− j
+ · · ·+ wk

n+1− k
, k = 1, . . . ,n),

and the joint pdf of the vector of partial sums Yk = ∑
k
j=1 Wj, k = 1, . . . ,n, is

f(Y1,Y2,...,Yn)(y1,y2, . . . ,yn) = n! f(X1,X2,...,Xn)

(
y1
n , . . . ,

k

∑
j=1

(k+1− j)(y j−y j−1)

n+1− j , . . . ,yn

)
with 0 < y1 < y2 < .. . < yn and the convention y0 = 0.

If X _ Uniform(0,ωX ), then

f(X1,X2,...,Xn)

(
y1
n , . . . ,

k

∑
j=1

(k+1− j)(y j−y j−1)

n+1− j , . . . ,yn

)
=

1
ωn

X
= f(X1,X2,...,Xn)(y1,y2, . . . ,yn),

and hence (Y1,Y2, . . . ,Yn)
d
= (X1:n,X2:n, . . . ,Xn:n).

(Observe that if ωX < ∞, we can consider n+1 spacings, with Sn+1 = ωX −Xn:n; of course in this situation
Sn+1, Sn+1:n+1 and Wn+1 (where in this case it is convenient to use the transformation

Wk = (n+2− k)(Sk:n+1−Sk−1:n+1),
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as in Johnson et al. [17] (p. 305) can be expressed as simple functions of the predecessor members of the
corresponding samples. We still get the result that (Y1,Y2, . . . ,Yn)

d
= (X1:n,X2:n, . . . ,Xn:n) in case of standard

uniform parent X .)
This suggests that uniformity can be investigated testing wether {Xk:n}n

k=1 and {Yk}n
k=1 can be considered

samples from the same distribution. Unfortunately, under the null hypothesis that the parent distribution is
standard uniform,

(Y1,Y2, . . . ,Yn)
d
= (X1:n,X2:n, . . . ,Xn:n),

but the two vectors are not independent, since we can re-express Yk = ∑
k
j=1 S j:n +(n− k)Sk:n, and conse-

quently Yn = Xn:n. Thus, Smirnov two-sample test is of no use in the present situation.

6.3 Size matters!

The temptation to use “many” data — and nowadays automatic data collection, large data sets, resampling
techniques, and the use of simulated data easily serve such a purpose — must be used sparingly.

In fact, with too many data the most irrelevant differences will be significant. Consider for instance some
2× 2 contingency table appropriate to investigate independence of factors (i.e., table with free margins,
resting from a dichotomous cross classification of a sample of size n), say

a b a+b
c d c+d

a+ c b+d n(= a+b+ c+d)

The usual test statistic is Pearson’s chi-square,

X2
2,2 =

n(ad−bc)2

(a+b)(c+d)(a+ c)(b+d)
.

For instance, if the table is
33 54 87
40 42 82
73 96 169

then the observed value of the test statistics is 2.025, corresponding to a p-value of 0.155, and at the usual
level of significance independence is not rejected. However with the similar table

33×5 54×5 87×5
40×5 42×5 82×5
73×5 96×5 169×5

(strictly similar in the sense that the odds ratios are exactly the same) the observed value of the test statistic
is 2.025× 5, and the corresponding p-value is 0.0015, leading to straight rejection. It can be argued: OK,
it’s natural, with bigger size we have stronger evidence.

This is so — but the worrying question is: with a sample size big enough, at the end of the day ANY null
hypothesis will be rejected. With too many data anything can be rejected, even truth!

This is a caveat on the abusive use of cumulative meta analysis, computational samples inflation, and in
general resampling techniques. Statistics is to be used sparingly, quantum satis as in the old recipes.
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Appendix

We provide full proof of theorems 1 and 2; the fact that U +X−bU +Xc is uniform has been first remarked
by Feller [10].

Proof of theorem 1

Both variables V and W have support on [0,1]. Therefore, for 0 < v < 1,

P(V ≤ v) = P(U ≤ vX)+P(1−U ≤ v(1−X)) =
∫ 1

0
vx fX (x)dx+

∫ 1

0
v(1− x) fX (x)dx =

= vE(X)+ vE(1−X) = v

proving that V _Uni f orm(0,1).

The independence between V and X follows from the fact that

P(V ≤ v|X = x) = P(U ≤ vx)+P((1−U)≤ v(1− x)) = vx+ v(1− x) =

= v = P(V ≤ v).

On the other hand, since S =U +X has pdf

fS(s) = FX (s)I[0,1)(s)+ [1−FX (s−1)]I[1,2](s)

where FX denotes the df of X , then for 0 < w < 1,

P(W ≤ w) = P(0≤U +X ≤ w)+P(1≤U +X ≤ 1+w)

=
∫ w

0
FX (s)ds+

∫ 1+w

1
(1−FX (s−1))dx

=
∫ w

0
FX (s)ds+

∫ 1+w

1
ds−

∫ 1+w

1
FX (s−1)ds

=
∫ w

0
FX (s)ds+w−

∫ w

0
FX (x)dx = w

showing that W _Uni f orm(0,1).

Regarding the independence between W and X :

P(W ≤ w|X = x) = P(0≤U + x≤ w)+P(1≤U + x≤ 1+w)

= P(0≤U ≤ w− x)+P(1− x≤U ≤ 1− x+w)

= max{0,w− x}+min{1,1− x+w}− (1− x)

Two cases are to be considered here:

i) if w− x < 0, then 1− x+w < 1, thus

P(W ≤ w|X = x) = 1− x+w− (1− x) = w
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ii) if w− x > 0, then 1− x+w > 1, and therefore

P(W ≤ w|X = x) = w− x+1− (1− x) = w

revealing that W and X are indeed independent random variables.

Proof of theorem 2

Let Fm and fm denote the df and the pdf of Xm, m ∈ [−2,2], respectively, and let F∗m and f ∗m denote the df
and pdf of the random variable 1−Xm, where F∗m(x) = 1−Fm(1− x) and f ∗m(x) = fm(1− x).
For 0 < v < 1,

P(Vm1,m2 ≤ v) = P(Xm1 ≤ vXm2)+P((1−Xm1 ≤ v(1−Xm2))

=
∫ 1

0
Fm1(vx) fm2(x)dx+

∫ 1

0
F∗m1

(vx) f ∗m2
(x)dx

=
∫ 1

0
[m1

2 (vx)2 +(1− m1
2 )vx][1+m2(x− 1

2 )]dx+

+
∫ 1

0
[−m1

2 (vx)2 +(1+ m1
2 )vx][1−m2(x− 1

2 )]dx

= 1
24 [m1(m2 +4)v2 +(2−m1)(m2 +6)v]+

+ 1
24 [m1(m2−4)v2 +(2+m1)(6−m2)v]

= m1m2
12 v2 +(1− m1m2

12 )v

and therefore Vm1,m2
d
= Xm1m2

6
.

On the other hand, since Sm1,m2 = Xm1 +Xm2 has pdf

fSm1 ,m2
(s) =


m1m2

6 s3 + (m1+m2−m1m2)
2 s2 + (2−m1)(2−m2)

4 s , s ∈ (0,1)
−m1m2

6 s3 + (m1m2−m1−m2)
2 s2 + (6m1+6m2−m1m2−4)

4 s− m1m2
6 −m1−m2 +2 ,s ∈ [1,2)

0 , other values

then for 0 < w < 1,

P(Wm1,m2 ≤ w) = P(0≤ Sm1,m2 ≤ w)+P(1≤ Sm1,m2 ≤ 1+w)

= m1m2
24 w4 + (m1+m2−m1m2)

6 w3 + (2−m1)(2−m2)
8 w2−

− m1m2
24 w4− (m1+m2)

6 w3 + (m1m2+2m1+2m2−4)
8 w2 + (12−m1m2)

12 w

=−m1m2
6 w3 + m1m2

4 w2 +(1− m1m2
12 )w

= m1m2
12 (3w2−2w3)+(1− m1m2

12 )w

which proves that Wm1,m2 is a mixture of a Beta(2,2) and uniform random variables with mixing proportions
m1m2

12 and 1− m1m2
12 , respectively.

Remark 2: While in theorem 1 the pairs of random variables X and V and X and W are independent —
an essential feature to use them to augment the random sample —, the variables Vm1,m2 and Wm1,m2 are
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correlated with both Xm1 and Xm2 . In fact, some standard algebra manipulation shows that

fVm1 ,m2 |Xm2=x(v) =
[
1+m1

(
v(2x−1)− x+ 1

2

)]
I(0,1)(v) ,

so independence does occur if and only if Xm1 _Uni f orm(0,1). On the other hand,

fWm1 ,m2 |Xm1=x(w) = [1+m2(w− x− 1
2 )]IA1(x,w)+ [1+m2(w− x+ 1

2 )]IA2(x,w) ,

where A1 = {(x,w)∈ IR2 : 0< x <w< 1} and A2 = {(x,w)∈ IR2 : 0<w≤ x < 1}. Therefore independence
between Wm1,m2 and Xm1 occurs if and only if Xm2 _Uni f orm(0,1).
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