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Abstract. In this paper, we deal with the estimation, under a semi-parametric framework, of the

Value at Risk (VaR) at a level p, the size of the loss occurred with a small probability p. Under such

a context, the classical VaR estimators are the Weissman-Hill estimators, based on an intermediate

number k of top order statistics. But these VaR estimators do not enjoy the adequate linear property

of quantiles, contrarily to the PORT VaR-estimators, which depend on an extra tuning parameter q,

with 0 ≤ q < 1. We shall here consider “quasi-PORT” reduced-bias VaR-estimators, for which such a

linear property is obtained approximately. They are based on a partially shifted version of a minimum-

variance reduced-bias (MVRB) estimator of the extreme value index, the primary parameter in Statistics

of Extremes. Due to the stability on k of the MVRB extreme value index and associated VaR-estimates,

we propose the use of a heuristic stability criterion for the choice of k and q, providing applications of

the methodology in the field of finance.

1 Introduction and preliminaries

We shall place ourselves under a semi-parametric framework, to refer the estimation of a positive
extreme value index (EVI) γ, the primary parameter in Statistics of Extremes and the basis
for the estimation of the Value at Risk (VaR) at a level p, denoted V aRp, the size of the
loss occurred with a small probability p. In other words, we are interested in the estimation
of a (high) quantile, χ1−p := F←(1 − p), of a probability distribution function (d.f.) F , with
F←(y) := inf {x : F (x) ≥ y}, the generalized inverse function of F . Let us denote U(t) :=
F←(1− 1/t), t ≥ 1, a reciprocal quantile function such that χ1−p ≡ V aRp = U(1/p). We shall
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thus consider heavy-tailed parents, quite common in finance, i.e., parents such that, as t→∞,

U ∈ RVγ ⇐⇒ 1− F ∈ RV−1/γ ,

where, as usual, the notation RVα stands for regularly-varying functions with an index of
regular variation equal to α, i.e., positive measurable functions g(·) such that for any x ≥ 0,
g(tx)/g(t)→ xα, as t→∞. We are then working in DM(EVγ>0), the domain of attraction for
maxima of EVγ , γ > 0, with EVγ denoting the general extreme value (EV) d.f., given by

EVγ(x) =

{
exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0,
(1.1)

with γ the EVI. For heavy-tailed parents and given a sample Xn = (X1, . . . , Xn), the classical
EVI-estimator is the Hill estimator (Hill, 1975), here denoted H ≡ Hn(k), and given by

Hn(k) ≡ Hn(k; Xn) :=
1
k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}, k < n, (1.2)

the average of the k log-excesses over a high random threshold Xn−k:n. Consistency of the
estimator in (1.2) is achieved if Xn−k:n is an intermediate order statistic (o.s.), i.e., if

k = kn →∞ and k/n→ 0, as n→∞. (1.3)

The Hill estimator in (1.2) is scale-invariant but not location invariant, as often desired, and
this contrarily to the PORT-Hill estimators, recently introduced in Araújo Santos et al. (2006)
and further studied in Gomes et al. (2008a), with PORT standing for peaks over a random
threshold. The class of PORT-Hill estimators is based on a sample of excesses over a random
threshold Xnq :n, nq := [nq]+1, with [x] denoting, as usual, the integer part of x, i.e., it is based
on

X(q)
n :=

(
Xn:n −Xnq :n, Xn−1:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

)
, nq = [nq] + 1. (1.4)

We need to have 0 < q < 1, for d.f.’s with an infinite left endpoint xF := inf{x : F (x) > 0}
(the random threshold is an empirical quantile). We can also have q = 0, provided that the
underlying model has a finite left endpoint xF (the random threshold is then the minimum).
These new classes of EVI-estimators are the so-called PORT-Hill estimators, denoted H(q)

n , and,
for 0 ≤ q < 1 and k < n− nq, they are given by

H(q)
n (k) := Hn(k; X(q)

n ) =
1
k

k∑
i=1

ln
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n
, (1.5)

2



i.e., they have the same functional form of the Hill estimator in (1.2), but with the original
sample Xn = (X1, . . . , Xn) replaced by the sample of excesses X(q)

n in (1.4). These estimators
are now invariant for both changes of scale and location in the data, and depend on the tuning
parameter q, which provides a highly flexible class of EVI-estimators. Provided that we ade-
quately choose the tuning parameter q, the PORT estimators may even compare favorably with
the second-order minimum-variance reduced-bias (MVRB) EVI-estimators, recently introduced
in the literature and briefly discussed in the following.

Indeed, due to the high bias of the Hill estimator, in (1.2), for moderate up to large k, several
authors have dealt with bias reduction in the field of extremes, working then in a slightly more
strict class than DM(EVγ>0), the class of models U(·) such that

U(t) = C tγ
(
1 +A(t)/ρ+ o(tρ)

)
, A(t) = γβtρ, (1.6)

as t → ∞, where ρ < 0 and β 6= 0. This means that the slowly varying function L(t) in
U(t) = tγL(t) is assumed to behave asymptotically as a constant C. Note that to assume (1.6)
is equivalent to saying that we can choose A(t) = γβtρ, ρ < 0, in the more general second-order
condition

lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=
xρ − 1
ρ

. (1.7)

The Hill estimator, in (1.2), reveals usually a high asymptotic bias, i.e., as n → ∞,√
k (Hn(k)− γ) is asymptotically normal with variance γ2 and a non-null mean value, equal to

λA/(1− ρ), whenever
√
k A(n/k) → λA 6= 0, finite, with A(·) the function in (1.7). This non-

null asymptotic bias, together with a rate of convergence of the order of 1/
√
k, leads to sample

paths with a high variance for small k, a high bias for large k, and a very sharp mean squared
error (MSE) pattern, as a function of k. A simple class of second-order MVRB EVI-estimators
is the one in Caeiro et al. (2005), used for a semi-parametric estimation of lnV aRp in Gomes
and Pestana (2007b). This class, here denoted H ≡ Hn(k), depends upon the estimation of the
second-order parameters (β, ρ) in (1.6). Its functional form is

Hn(k) ≡ Hn(k; Xn) ≡ H β̂,ρ̂(k) := Hn(k)
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
, (1.8)

with Hn(k) the Hill estimator in (1.2), and where (β̂, ρ̂) needs to be an adequate consistent
estimator of (β, ρ). Algorithms for the estimation of (β, ρ) are provided in Gomes and Pestana
(2007a,b), with one of them reformulated in Section 2 of this paper.

With Q standing for quantile function, the classical Weissman-Hill V arp-estimator,

Qp|H(k) := Xn−k+1:n c
Hn(k)
k , ck ≡ ck,n,p =

k

np
, (1.9)

has been introduced in Weissman (1978). The MVRB VaR-estimator Qp|H , with Qp|H given in
(1.9), was studied in Gomes and Pestana (2007b). However, for any positive real δ, and with
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Qp|• denoting either Qp|H or Qp|H , Qp|•(k; δ Xn) = δ Qp|•(k; Xn), as desirable, but contrarily
to the linear property for quantiles, χp(δX + s) = δχp(X) + s for any real s and positive real
δ, we no longer have Qp|•(k; s1n + δXn) = s + δ Qp|•(k; Xn), with 1n denoting, as usual, a
vector with n unit elements. Araújo Santos et al. (2006) have developed a class of high quantile
estimators based on the sample of excesses over a random threshold Xnq :n, provided in (1.4),
and, among others, they propose the so-called PORT-Weisman-Hill V aRp-estimators,

Q
(q)
p|H(k) := (Xn−k:n −Xnq :n) cH

(q)
n (k)

k +Xnq :n, (1.10)

where H(q)
n (k) is the Hill estimator of γ, made location/scale invariant by using the transformed

sample X(q)
n , i.e. H(q)

n (k) is the estimator in (1.5). They consequently obtain exactly the above
mentioned linear property for the quantile estimators.

The second-order MVRB EVI-estimators in (1.8) are not location invariant, but they are
“approximately” location invariant. If we merely replace, in (1.10), H(q)

n (k) by Hn(k) in (1.8),
we have practically no improvement comparatively with the MVRB-estimator Qp|H . With

H
(q)
n (k) defined in (1.5), we shall consider here the “quasi-PORT” EVI-estimator,

H
(q)
n (k) ≡ H(q)

n (k; β̂, ρ̂) := H(q)
n (k)

(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
(1.11)

and the associated “quasi-PORT” V arp-estimator, with the functional form

Q
(q)

p|H(k) := (Xn−k:n −Xnq :n) cH
(q)
n (k)

k +Xnq :n. (1.12)

In Section 2 of this paper, we briefly discuss the estimation of the second-order parameters
β and ρ. In Section 3, we briefly review the main asymptotic properties of the estimators under
consideration. In Section 4, we describe the results associated with a Monte-Carlo simulation
study of the new VaR-estimators, in (1.12). Finally, in Section 5, due to the stability on k of
the MVRB estimates H, in (1.8), and Qp|H , with Qp|H provided in (1.9), as well as the new
VaR-estimates in (1.12), we propose the use of a heuristic stability criterion for the choice of k
and q, providing applications of the methodology in the field of finance.

2 Estimation of second-order parameters

All reduced-bias EVI-estimators, like the one in (1.8), and associated VaR-estimators, require
the estimation of scale and shape second-order parameters, (β, ρ), in (1.6). Such an estimation
will now be briefly discussed.
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2.1 Estimation of the shape second-order parameter

For models in (1.6), we shall consider the class of estimators introduced in Fraga Alves et al.
(2003), possibly parameterized in a tuning real parameter τ ∈ R, as suggested in Caeiro and
Gomes (2006). Those estimators are based on the statistics

T (τ)
n (k) :=

(
M

(1)
n (k)

)τ
−
(
M

(2)
n (k)/2

)τ/2
(
M

(2)
n (k)/2

)τ/2
−
(
M

(3)
n (k)/6

)τ/3 , τ ∈ R,

with the notation abτ = b ln a, for τ = 0, and where

M (j)
n (k) :=

1
k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n}j , j = 1, 2, 3.

They are given by

ρ̂τ (k) ≡ ρ̂(τ)
n (k) := min

(
0,

3(T (τ)
n (k)− 1)

T
(τ)
n (k)− 3

)
, k < n. (2.1)

Under mild restrictions on k, these statistics converge towards ρ, independently of the tuning
parameter τ . Distributional properties of the estimators in (2.1) can be found in Fraga Alves
et al. (2003). Consistency is achieved in the class of models in (1.6), for intermediate k-
values, denoted k1, such that apart from condition (1.3), with k replaced by k1, we have
√
k1 A(n/k1)→∞, as n→∞. We have here decided for the choice

k1 =
[
n1−ε] , ε = 0.001. (2.2)

Remark 2.1. With the choice of k1 in (2.2), and whenever
√
k1 A(n/k1)→∞, we get ρ̂−ρ :=

ρ̂τ (k1)−ρ = op(1/ lnn), a condition needed, in order not to have any increase in the asymptotic
variance of the new bias-corrected Hill estimator in equation (1.8), comparatively with the Hill
estimator in (1.2). Note that with the choice of k1 in (2.2), we get

√
k1 A(n/k1) → ∞ if and

only if ρ > 1/2− 1/(2ε) = −499.5, an irrelevant restriction, from a practical point of view.

Remark 2.2. Under adequate general conditions, and for an appropriate tuning parameter τ ,
the ρ-estimators in (2.1) show highly stable sample paths as functions of k, the number of top
o.s.’s used, for a range of large k-values (see, for instance, the pattern of ρ̂0(k) in figures 7, 9
and 11).

Remark 2.3. It is sensible to advise practitioners not to choose blindly the value of τ in (2.1):
sample paths of ρ̂τ (k), as functions of k, for a few values of τ , should be drawn, in order to select
the value of τ which provides higher stability for large k, by means of any stability criterion,
like the one proposed in the Algorithm of Section 2.3.
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2.2 Estimation of a scale second-order parameter

For the estimation of the scale second-order parameter β, in (1.6), we shall here consider

β̂ρ̂(k) :=
(
k

n

)ρ̂ dρ̂(k) D0(k)−Dρ̂(k)
dρ̂(k) Dρ̂(k)−D2ρ̂(k)

, k < n, (2.3)

dependent on the estimator ρ̂ = ρ̂τ (k1) suggested in Section 2.1 and where, for any α ≤ 0,

dα(k) :=
1
k

k∑
i=1

(
i

k

)−α
and Dα(k) :=

1
k

k∑
i=1

(
i

k

)−α
Ui,

with Ui := i
(

lnXn−i+1:n − lnXn−i:n
)
, 1 ≤ i ≤ k, the scaled log-spacings.

Details on the distributional behaviour of the estimator in (2.3) can be found in Gomes and
Martins (2002) and more recently in Gomes et al. (2008b) and Caeiro et al. (2009). Consistency
is achieved for models in (1.6), k values such that (1.3) holds and

√
k A(n/k)→∞, as n→∞,

and estimators ρ̂ of ρ such that ρ̂ − ρ = op(1/ lnn). Alternative estimators of β can be found
in Caeiro and Gomes (2006) and Gomes et al. (2009).

2.3 An algorithm for second-order parameters estimation

Based on the algorithms proposed before, we now consider the following simple algorithm:
Algorithm (Second-order estimation):

1. Given a sample (x1, x2, . . . , xn), plot the observed values of ρ̂τ (k) in (2.1), for τ = 0 and
τ = 1;

2. Consider {ρ̂τ (k)}k∈K, for k in the interval K =
(
[n0.995], [n0.999]

)
, compute their median,

denoted ητ , and compute Iτ :=
∑

k∈K (ρ̂τ (k)− ητ )2, for τ = 0, 1. Next choose the tuning
parameter τ = 0 if I0 ≤ I1; otherwise, choose τ = 1;

3. Work with ρ̂ ≡ ρ̂τ = ρ̂τ (k1) and β̂ ≡ β̂τ := β̂ρ̂τ (k1), ρ̂τ (k), k1 and β̂ρ̂(k) given in (2.1),
(2.2) and (2.3), respectively.

Remark 2.4. If there are negative elements in the sample, the sample size n should be replaced
by n0, the number of positive elements in the sample.

For models with |ρ| ≤ 1, the most common in practice and the ones for which bias-reduction
is neatly needed, this algorithm leads in almost all situations to the tuning parameter τ = 0,
the value considered in this paper, both in simulations and in case-studies. For details on this
and similar algorithms, see Gomes and Pestana (2007a).

6



3 A brief note on the normal asymptotic non-degenerate be-

haviour of the estimators

The asymptotic normality, as well as full information on a possibly non-null asymptotic bias,
of the estimators ρ̂τ (k) and β̂ρ̂(k) in (2.1) and (2.3), respectively, as well as of reduced-bias
estimators, like Hn(k) in (1.8), is easier to derive if we slightly restrict the class of models in
(1.6). In this paper, similarly to what has been done in Gomes et al. (2007), and for convenience
of exposition, we consider a third-order framework where we merely make explicit a third order
term in (1.6), assuming that

U(t) = Ctγ
(
1 + γβtρ + β′t2ρ + o(t2ρ)

)
, (3.1)

as t→∞, with C, γ > 0, β, β′ 6= 0, ρ < 0.

Remark 3.1. Note that to assume (3.1) is equivalent to saying that the more general third-order
condition

lim
t→∞

lnU(tx)−lnU(t)−γ lnx
A(t) − xρ−1

ρ

B(t)
=
xρ+ρ′ − 1
ρ+ ρ′

(3.2)

holds with ρ = ρ′ < 0 and that we can choose, in (3.2), A(t) = α tρ =: γ β tρ, B(t) = β′ tρ =
β′A(t)/(βγ), β, β′ 6= 0, with β and β′ “scale” second- and third-order parameters, respectively.

Remark 3.2. Note also that several common heavy-tailed models belong to the class in (3.1).
Among them we mention:

• the Fréchet model, with d.f. Φ1/γ(x) = exp(−x−1/γ), x ≥ 0, γ > 0, for which ρ′ = ρ = −1,
β = 0.5 and β′ = 5/6;

• the EV model, with d.f. EVγ(x) in (1.1), for γ = 1/2 (ρ = ρ′ = −0.5) and for γ = 1 or
γ ≥ 2 (ρ = ρ′ = −1). The parameter β is equal to 1 for γ = 1/2, 3/2 for γ = 1 and 1/2
for γ ≥ 2. The parameter β′ is −1/4 for γ = 1/2, −1/12 for γ = 1, −11/12 for γ = 2
and γ(3γ − 5)/24 for γ > 2;

• the Generalized Pareto (GP) model, with d.f. GPγ(x) = 1− (1 + γx)−1/γ, x ≥ 0, γ > 0,
for which ρ′ = ρ = −γ and β = β′ = 1;

• the Burr model, with d.f. Bγ,ρ(x) = 1− (1 + x−ρ/γ)1/ρ, x ≥ 0, γ > 0, ρ′ = ρ < 0 and, as
for the GP model, β = β′ = 1;

• the Student’s tν-model with ν degrees of freedom, with a probability density function

ftν (t) = Γ((ν + 1)/2)
[
1 + t2/ν

]−(ν+1)/2
/(
√
πν Γ(ν/2)), t ∈ R (ν > 0),

7



for which γ = 1/ν and ρ′ = ρ = −2/ν. For an explicit expression of β and β′ as a
function of ν, see Caeiro and Gomes (2008).

Given an estimator Sn(k) of a parameter of extreme events ξ, based on the k top o.s.’s in
the available sample, and under an adequate second-order framework, let us say the more strict
second-order framework in (1.6), there exist a regularly varying function C ∈ RVc(ρ), c(ρ) < 0,
a sequence of standard normal r.v.’s PSk , an asymptotic variance, σ2

S
> 0, an asymptotic bias

bS ∈ R and a rate of convergence
√
rk → 0, as k → ∞, such that, as n → ∞, the asymptotic

distributional representation

Sn(k) d= ξ + σS
√
rk P

S
k + bSC(n/k)(1 + op(1)) (3.3)

holds. Consequently, Sn(k) is consistent for the estimation of ξ provided that k is intermediate,
i.e., (1.3) holds. If we further assume that

√
k C(n/k)→ λC , finite,

Sn(k)− ξ
√
rk

d−→
n→∞

Normal(λC bS , σ
2
S
). (3.4)

Whenever we are dealing with EVI-estimators, the rate of convergence is usually of the
order of 1/

√
k, i.e., rk = 1/k. Then, for the associated semi-parametric quantile estimators,

rk = (ln ck)2/k, with ck defined in (1.9). For the classical EVI-estimation, through an estimator
like the Hill estimator, in (1.2), and under the second-order framework in (1.7), C ≡ A ∈ RVρ,
i.e., c(ρ) = ρ, whereas for reduced-bias EVI-estimation, through an estimator like the one
in (1.8), and under the more restrict third-order framework in (3.1), C ≡ A2 ∈ RV2ρ, i.e.,
c(ρ) = 2ρ. A similar but more technical comment applies to the PORT-estimation based on
a classical EVI-estimator or on a reduced-bias EVI-estimator. For details on the asymptotic
behaviour of PORT-estimators, see Araújo Santos et al. (2006). For MVRB EVI-estimation
through the EVI-estimator in (1.8), and under the third-order framework in (3.1), see Caeiro
et al. (2009). A link between EVI- and associated VaR-estimators can be found, for instance,
in Beirlant et al. (2008), Theorem 4.1. Indeed, let us assume that (1.6) holds, k = kn is an
intermediate sequence such that ck := k/np→∞, ln ck/

√
k → 0 and

√
kA(n/k) → λA , finite,

as n→∞. Let γ̂n(k) be any consistent estimator of the tail index γ, such that
√
k
(
γ̂n(k)− γ

) d−→
n→∞

Normal(λAbγ̂ , σ
2
γ,ρ), (3.5)

and let us consider Qp|γ̂(k), with Qp|H(k) provided in (1.9). Then,
√
k

ln ck

(Qp|γ̂(k)
V aRp

− 1
)

d−→
n→∞

Normal(λAbγ̂ , σ
2
γ,ρ)

even if we work with reduced-bias tail index estimators like the ones in (1.8), provided that
(β̂, ρ̂) is consistent for the estimation of (β, ρ) and (ρ̂− ρ) ln(n/k) = op(1), as n→∞. Similar
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remarks apply to PORT and quasi-PORT estimation. In (3.5), we have bH = 1/(1−ρ) whereas
bH = 0. The asymptotic variance in (3.5) is equal to γ2 both for the Hill and the corrected-Hill
estimators, in (1.2) and (1.8), respectively. Consequently, the H-estimators outperform the
H-estimators for all k. A similar remark applies to quantile estimation.

4 Finite sample behaviour: a Monte-Carlo simulation

In this section, for p = 1/n and q = 0, 0.1 and 0.25, we are interested in the finite-sample
behaviour of the VaR-estimators, Q(q)

p|H(k), in (1.12), comparatively with the classical Weissman-
Hill VaR-estimator, Qp|H(k), in (1.9), the associated PORT-Weissman-Hill VaR-estimators,
Q

(q)
p|H(k), in (1.10), and the MVRB VaR-estimator Qp|H(k), with Qp|H(k) given in (1.9). The

overall simulation is based on a multi-sample simulation with size 5000× 20, i.e., 20 replicates
with 5000 runs each. For details on multi-sample simulation refer to Gomes and Oliveira (2001).
The patterns of mean values (E) and root mean squared errors (RMSE) are based on the first
replicate. We have considered the following underlying parents, already mentioned in Remark
3.2:

A. the Burr model, with γ = 0.25 and ρ = −0.5;

B. the Student’s tν-model with ν = 4 degrees of freedom (γ = 0.25 and ρ = −0.5);

C. the general EV model, with γ = 0.5 (ρ = −0.5).

4.1 Mean values and mean squared errors patterns

We shall consider the following normalized V aRp-estimators, Qp|H(k)/V aRp, Qp|H(k)/V aRp,

Q
(q)
p|H(k)/V aRp and Q

(q)

p|H(k)/V aRp. For the sake of simplicity, we denote these quotients by
QH , QH , QH|q and QH|q, respectively. In Figures 1, 2 and 3, for the models in A., B. and
C., respectively, we show the simulated patterns of mean value, E(Q•), and root mean squared
error, RMSE(Q•), of these normalized estimators.

These parents were chosen just to illustrate the fact that:

• the quasi-PORT VaR-estimators can be unable to improve the performance of QH , as hap-
pens also with the PORT-Weissman-Hill estimators when compared with the Weissman-
Hill estimator QH (see Figure 1, associated with the above mentioned Burr model);

• the PORT-Weissman-Hill estimators can outperform the MVRB-estimator, QH (see Fig-
ure 2, associated with a Student t4 underlying parent);
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Figure 1: Underlying Burr parent with (γ, ρ) = (0.25,−0.5).
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Figure 2: Underlying Student t4 parent (γ = 0.25, ρ = −0.5).

• we can often find a value of q that provides the best estimator of V aRp through the use
of the new class of estimators Q(q)

p|H(k), in (1.12) (like the value q = 0.1 in Figure 2 and
the value q = 0.25 in Figure 3).

4.2 Relative efficiency and bias indicators at optimal levels

Given a sample Xn = (X1, . . . , Xn), let us again denote S(k) = Sn(k) any statistic dependent
on k, the number of top o.s.’s used in an inferential procedure related with a parameter of
extreme events ξ. The optimal sample fraction for S(k) is denoted kS0 (n)/n, with kS0 (n) :=
arg minkMSE (Sn(k)), the so-called optimal level for the estimation of the parameter ξ.

We shall now present, for n = 200, 500, 1000, 2000 and 5000, and with • denoting H or
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In the case of a GEV model, with a shift $s$:
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0.5

1

1.5

2

0 100 200 300 400

0.1

0.3

0.5

0.7

0.9

0 100 200 300 400

! 

E(Q
•
)

! 

RMSE(Q
•
)

  

! 

H

    

! 

H | 0

    

! 

H | 0.1

    

! 

H | 0.25

  

! 

H 

    

! 

H | 0

    

! 

H | 0.25

  

! 

H

    

! 

H | 0

    

! 

H | 0.1

    

! 

H | 0.25

    

! 

H | 0.25

  

! 

H 
    

! 

H | 0

! 

k

! 

k

Figure 3: Underlying Extreme Value parent with γ = 0.5 (ρ = −0.5).

H or H|q or H|q, the simulated optimal sample fraction (k•0/n), mean values (E•0) and relative
efficiencies (REFF •0 ) of Q•, at their optimal levels. The search of the minimum MSE has been
performed over the region of k-values between 1 and [0.95 × n]. The MSE of QH(kH0 ) is also
provided so that it is possible to recover the MSE of any other quantile estimator. For a certain
Q•, the REFF •0 indicator is given by

REFF •0 :=

√
MSE

{
QH (kH0 )

}
MSE {Q•(k•0)}

=:
RMSEH0
RMSE•0

.

Among the estimators considered, and for all n, the one providing the smallest squared bias
and smallest MSE, or equivalently, the highest REFF is underlined and in bold. Tables 1, 2
and 3 are related with the underlying parents in A., B., and C., respectively.
For an easier visualization, we present, in Figure 4, the REFF-indicators of the new VaR-
estimators, in (1.12), as well as of the PORT-Weissman-Hill VaR-estimators, at optimal levels,
comparatively with the classical VaR-estimator, in (1.9), also at its optimal level. Figure 5 is
equivalent to Figure 4, but with the simulated mean value of Q•0 = Q•(k•0).

Regarding the REFF-indicators, we would like to draw the following comments:

• For models like the Burr, with a left endpoint equal to zero, we cannot acchieve any
improvement with the shifted estimators.

• For a model like the Student tν , here illustrated for ν = 4, the quasi-PORT VaR-estimators
have the best performance for all n, if q = 0.1. However, the PORT-Weissman-Hill VaR-
estimators associated with q = 0.1 exhibit also a high efficiency.

• For an underlying EV model, we reach a clear improvement in the estimation of a high
quantile, whenever we consider the quasi-PORT estimators, in (1.12). Note however that
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Table 1: Simulated optimal sample fractions (k•0/n), mean values (E•0 ), MSE of QH0 and relative efficiency mea-

sures (REFF •0 ) at optimal levels, together with corresponding 95% confidence intervals, for a Burr parent with

(γ, ρ) = (0.25,−0.5).

n 200 500 1000 2000 5000

k•0/n (and 95% confidence intervals)

QH 0.0903± 0.0039 0.0614± 0.0028 0.0458± 0.0020 0.0328± 0.0012 0.0222± 0.0009

QH|0 0.0848± 0.0041 0.0597± 0.0022 0.0440± 0.0019 0.0321± 0.0010 0.0218± 0.0008

QH|0.1 0.0685± 0.0037 0.0451± 0.0026 0.0331± 0.0014 0.0240± 0.0010 0.0146± 0.0006

QH|0.25 0.0568± 0.0033 0.0367± 0.0022 0.0266± 0.0012 0.0189± 0.0008 0.0121± 0.0005

Q
H

0.8720± 0.0021 0.7632± 0.0025 0.5950± 0.0066 0.4106± 0.0099 0.1203± 0.0051

Q
H|0 0.8088± 0.0044 0.6863± 0.0061 0.5139± 0.0071 0.3592± 0.0100 0.1039± 0.0050

Q
H|0.1 0.4345± 0.0174 0.3035± 0.0091 0.1485± 0.0068 0.0745± 0.0031 0.0340± 0.0012

Q
H|0.25 0.3505± 0.0134 0.2079± 0.0092 0.0943± 0.0048 0.0495± 0.0022 0.0244± 0.0013

E•0 (and 95% confidence intervals)

QH 1.0854± 0.0034 1.0818± 0.0033 1.0791± 0.0035 1.0737± 0.0026 1.0695± 0.0023

QH|0 1.0856± 0.0036 1.0830± 0.0027 1.0785± 0.0035 1.0740± 0.0023 1.0697± 0.0025

QH|0.1 1.0888± 0.0035 1.0847± 0.0049 1.0839± 0.0033 1.0824± 0.0034 1.0751± 0.0029

QH|0.25 1.0904± 0.0035 1.0864± 0.0045 1.0860± 0.0032 1.0845± 0.0027 1.0823± 0.0029

Q
H

0.9660± 0.0038 0.9873± 0.0018 1.0012± 0.0013 1.0390± 0.0007 1.0596± 0.0011

Q
H|0 0.9566± 0.0043 0.9855± 0.0025 1.0113± 0.0009 1.0481± 0.0007 1.0590± 0.0015

Q
H|0.1 0.9676± 0.0010 1.0469± 0.0016 1.0686± 0.0023 1.0728± 0.0022 1.0706± 0.0019

Q
H|0.25 0.9823± 0.0014 1.0614± 0.0023 1.0739± 0.0028 1.0771± 0.0025 1.0774± 0.0028

MSE
QH
0 0.0648± 0.0013 0.0478± 0.0006 0.0381± 0.0004 0.0303± 0.0002 0.0223± 0.0002

REFF•0 (and 95% confidence intervals)

QH|0 0.9846± 0.0009 0.9885± 0.0006 0.9908± 0.0005 0.9926± 0.0002 0.9943± 0.0002

QH|0.1 0.9241± 0.0032 0.9143± 0.0027 0.9035± 0.0027 0.8907± 0.0038 0.8758± 0.0033

QH|0.25 0.8769± 0.0041 0.8635± 0.0045 0.8486± 0.0040 0.8325± 0.0034 0.8107± 0.0031

Q
H

1.8538± 0.0219 2.2510± 0.0187 2.4571± 0.0103 2.1555± 0.0103 1.5554± 0.0092

Q
H|0 1.7285± 0.0174 2.1311± 0.0155 2.2926± 0.0139 1.9577± 0.0081 1.5124± 0.0091

Q
H|0.1 1.5795± 0.0145 1.5271± 0.0103 1.3281± 0.0095 1.1922± 0.0055 1.0883± 0.0038

Q
H|0.25 1.4566± 0.0153 1.3178± 0.0090 1.1593± 0.0062 1.0553± 0.0026 0.9689± 0.0012
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Figure 4: REFF-indicators for a Burr model with γ = 0.25 and ρ = −0.5 (left), a Student t4 model (center) and an EV

model, with γ = 0.5 (right).
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Table 2: Simulated optimal sample fractions (k•0/n), mean values (E•0 ), MSE of QH0 and relative efficiency measures

(REFF •0 ) at optimal levels, together with corresponding 95% confidence intervals, for a Student t4 parent (γ = 0.25, ρ =

−0.5).

n 200 500 1000 2000 5000

k•0/n (and 95% confidence intervals)

QH 0.0808± 0.0037 0.0610± 0.0017 0.0501± 0.0011 0.0404± 0.0006 0.0297± 0.0005

QH|0.1 0.1983± 0.0034 0.1684± 0.0017 0.1512± 0.0016 0.1377± 0.0010 0.1242± 0.0006

QH|0.25 0.1328± 0.0040 0.1064± 0.0016 0.0895± 0.0015 0.0760± 0.0010 0.0624± 0.0004

Q
H

0.1560± 0.0083 0.0785± 0.0027 0.0568± 0.0014 0.0429± 0.0009 0.0314± 0.0005

Q
H|0.1 0.2843± 0.0032 0.2234± 0.0038 0.1825± 0.0021 0.1574± 0.0010 0.1367± 0.0006

Q
H|0.25 0.2003± 0.0042 0.1311± 0.0031 0.1001± 0.0018 0.0824± 0.0011 0.0650± 0.0007

E•0 (and 95% confidence intervals)

QH 0.9630± 0.0081 0.9791± 0.0052 0.9933± 0.0040 1.0014± 0.0028 1.0027± 0.0028

QH|0.1 0.9888± 0.0044 0.9956± 0.0024 0.9990± 0.0027 1.0006± 0.0018 1.0000± 0.0012

QH|0.25 0.9789± 0.0065 0.9921± 0.0030 0.9977± 0.0035 1.0012± 0.0029 1.0037± 0.0015

Q
H

0.9661± 0.0047 0.9879± 0.0050 0.9974± 0.0046 1.0014± 0.0036 1.0075± 0.0030

Q
H|0.1 0.9644± 0.0039 0.9993± 0.0034 1.0010± 0.0024 1.0007± 0.0015 1.0007± 0.0009

Q
H|0.25 0.9842± 0.0045 0.9980± 0.0043 0.9980± 0.0031 1.0027± 0.0022 1.0031± 0.0019

MSE
QH
0 0.0649± 0.0008 0.0433± 0.0005 0.0317± 0.0003 0.0232± 0.0003 0.0152± 0.0001

REFF•0 (and 95% confidence intervals)

QH|0.1 1.3351± 0.0080 1.4418± 0.0084 1.5339± 0.0068 1.6430± 0.0097 1.8276± 0.0134

QH|0.25 1.1536± 0.0061 1.2034± 0.0058 1.2346± 0.0066 1.2756± 0.0064 1.3415± 0.0062

Q
H

1.0792± 0.0065 1.0412± 0.0035 1.0256± 0.0021 1.0166± 0.0015 1.0092± 0.0014

Q
H|0.1 1.4853± 0.0070 1.5756± 0.0118 1.6243± 0.0058 1.7196± 0.0115 1.8894± 0.0136

Q
H|0.25 1.2752± 0.0090 1.2572± 0.0067 1.2760± 0.0060 1.3062± 0.0065 1.3626± 0.0066

even the PORT-estimators based on the Hill estimator provide REFF-indicators higher
than one for all n, with the highest indicator associated with q = 0 (a shift induced by the
minimum of the available sample). The pattern of the REFF-indicators is not so clear-cut
when we consider the quasi-PORT VaR-estimators. Anyway, there is, for all n, a value
of q providing the highest efficiency: q = 0.1 for n ≤ 500 and n = 5000, and q = 0.25 for
n = 1000 and 2000.

It is also clear from Figures 4 and 5 that there is not a full agreement between REFF and BIAS
indicators, but the discrepancies are moderate. Regarding bias at optimal levels, we can draw
the following comments:

• For the simulated Burr model the MVRB VaR-estimators exhibit the smallest bias for
all n, but not a long way from the quasi-PORT VaR-estimator associated with q = 0, as
expected.

• For the Student model, it is almost impossible to draw a clear-cut conclusion, but the
quasi-PORT VaR-estimator based on q = 0.1 has an interesting bias pattern.
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Table 3: Simulated optimal sample fractions (k•0/n), mean values (E•0 ), MSE of QH0 and relative efficiency measures

(REFF •0 ) at optimal levels, together with corresponding 95% confidence intervals, for a EV0.5 parent (ρ = −γ = −0.5).

n 200 500 1000 2000 5000

k•0/n (and 95% confidence intervals)

QH|0 0.1425± 0.0058 0.1047± 0.0046 0.0859± 0.0038 0.0656± 0.0026 0.0466± 0.0016

QH|0.1 0.1050± 0.0058 0.0743± 0.0040 0.0566± 0.0017 0.0429± 0.0016 0.0281± 0.0012

QH|0.25 0.0828± 0.0054 0.0596± 0.0031 0.0452± 0.0022 0.0340± 0.0011 0.0220± 0.0008

Q
H

0.1795± 0.0071 0.1712± 0.0038 0.5089± 0.0011 0.4646± 0.0015 0.3484± 0.0038

Q
H|0 0.2385± 0.0057 0.1756± 0.0038 0.1302± 0.0024 0.1009± 0.0020 0.0718± 0.0019

Q
H|0.1 0.2653± 0.0085 0.2443± 0.0060 0.2330± 0.0495 0.6638± 0.0019 0.6252± 0.0015

Q
H|0.25 0.2485± 0.0091 0.2841± 0.0286 0.5073± 0.0045 0.4844± 0.0021 0.3880± 0.0026

E•0 (and 95% confidence intervals)

QH 1.2450± 0.0100 1.2110± 0.0088 1.1889± 0.0077 1.1746± 0.0054 1.1570± 0.0055

QH|0 1.2031± 0.0075 1.1710± 0.0062 1.1571± 0.0062 1.1380± 0.0047 1.1181± 0.0042

QH|0.1 1.2205± 0.0093 1.1931± 0.0075 1.1759± 0.0040 1.1626± 0.0056 1.1407± 0.0045

QH|0.25 1.2260± 0.0102 1.2009± 0.0079 1.1844± 0.0067 1.1707± 0.0035 1.1477± 0.0042

Q
H

0.7997± 0.0108 0.8418± 0.0040 0.9148± 0.0052 0.9724± 0.0023 0.9966± 0.0022

Q
H|0 0.7993± 0.0042 0.8392± 0.0037 0.8669± 0.0027 0.8859± 0.0025 0.9082± 0.0024

Q
H|0.1 0.8174± 0.0059 0.8472± 0.0034 0.8777± 0.0042 0.9559± 0.0024 0.9837± 0.0015

Q
H|0.25 0.8335± 0.0063 0.8528± 0.0069 0.9338± 0.0037 0.9857± 0.0021 1.0036± 0.0018

MSE
QH
0 0.4414± 0.0119 0.2909± 0.0059 0.2185± 0.0035 0.1665± 0.0022 0.1161± 0.0019

REFF•0 (and 95% confidence intervals)

QH|0 1.2555± 0.0119 1.2887± 0.0119 1.3190± 0.0093 1.3489± 0.0075 1.3869± 0.0068

QH|0.1 1.1213± 0.0084 1.1275± 0.0064 1.1353± 0.0055 1.1381± 0.0027 1.1398± 0.0041

QH|0.25 1.0480± 0.0047 1.0505± 0.0034 1.0523± 0.0034 1.0527± 0.0019 1.0545± 0.0021

Q
H

1.5639± 0.0183 1.7016± 0.0217 2.0847± 0.0204 2.6439± 0.0204 3.0474± 0.0223

Q
H|0 1.8069± 0.0196 1.8423± 0.0213 1.8781± 0.0160 1.9165± 0.0145 1.9639± 0.0167

Q
H|0.1 1.7560± 0.0190 1.8908± 0.0220 2.0224± 0.0170 2.5494± 0.0236 3.4872± 0.0362

Q
H|0.25 1.6532± 0.0184 1.8430± 0.0230 2.3528± 0.0286 2.9227± 0.0260 3.2823± 0.0297
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Figure 5: BIAS-indicators for a Burr model with γ = 0.25 and ρ = −0.5 (left), a Student t4 model (center and an EV

model, with γ = 0.5 (right).

• For a EV model with γ = 0.5 and for all n, the smallest bias is achieved by the quasi-PORT
quantile estimator based on the shifted version of H, for q = 0.25. Note also the over-
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estimation achieved by the quantile estimators based on the Hill, as a counterpart of an
under-estimation achieved by the quantile estimators based on the MVRB EVI-estimator,
for small n.

In summary we may draw the following conclusions:

1. If the underlying model has a finite left endpoint at zero, the PORT or quasi-PORT
estimators can never beat the original estimators regarding efficiency.

2. For parents with an infinite left endpoint, like the Student parents, or a left endpoint
different from zero, like the EV parents, the best performance regarding efficiency is
attained by the new estimators for an adequate value of q. Such a q depends on the
underlying model and on the sample size n. A similar comment applies to bias reduction.

5 A heuristic choice of tuning parameters and case-studies in

the field of finance

5.1 An algorithm for the heuristic choice of k and q

With the notation X0:n = 0, and with Hn and H
(q)
n , given in (1.8) and (1.11), respectively, we

can consider that Hn ≡ H
(q)
n for q = −1/n (nq = 0). Our interest lies now on the estimation

of V aRp through Q
(q)

p|H , in (1.12). After Step 3., in the Algorithm provided in Section 2.3, we
propose now the following adaptive heuristic estimation of V aRp.
Algorithm (cont.) (Adaptive estimation of V aRp).

4. For q = −1/n, 0(0.05)0.25 compute the observed values of Q
(q)

p|H(k),
k = 1, 2, · · · , n− [nq]− 1;

5. Consider the smallest number of decimal places that enables variation in the observed
values of Q(q)

p|H(k), as functions of k (in this case zero decimal places for all data sets
considered). Choose q in the following way: for each q consider as possible estimates of
V aRp the values Q(q)

p|H(k), k(q)
min ≤ k ≤ k

(q)
max, to which is associated the largest run, with

a size lq = k
(q)
max − k(q)

min + 1. Choose q0 := arg maxq lq;

6. Consider all those estimates, Q(q0)

p|H (k), k(q0)
min ≤ k ≤ k

(q0)
max, now with an extra decimal place.

Count the frequencies associated to these estimates and obtain the mode of these values,
considering them with an extra decimal figure. Let us denote K∗ the set of k-values
corresponding to those estimates. Take k0 as the maximum of K∗ (in order to minimize
the variance).
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5.2 Applications to data in the field of finance

We have considered the performance of the non-adaptive and adaptive VaR-estimators studied
in this paper, when applied to the analysis of the log-returns associated with two of the four sets
of finance data considered in Gomes and Pestana (2007b). Those sets of data, collected over the
same period, i.e. from January 4, 1999 through November 17, 2005, were the daily closing values
of the Dow Jones Industrial Average In (DJI) and Microsoft Corp. (MSFT). Additionally, we
have considered over the same period the Euro-GB Pound (EGBP) daily exchange rates, already
used in Gomes et al. (2008c). All these samples have a size n = 1762. The Value at Risk (VaR),
defined as a large quantile of negative log-returns, i.e., of Li = − ln (Si+1/Si), 1 ≤ i ≤ n − 1,
with Si, 1 ≤ i ≤ n, a sample of consecutive close prices, is a common risk measure for large
losses. For details about VaR see, for instance, Holton (2003). Here, since we are interested in
the analysis of the risk of holding short positions, we have dealt with the positive log-returns,
i.e., with Pi = ln (Si+1/Si) = −Li, 1 ≤ i ≤ n − 1. Although there is some increasing trend in
the volatility, stationarity and weak dependence are assumed, under the same considerations
as in Drees (2003).

For all data sets we present essentially two figures. In the first one, we picture a box-and-
whiskers’ plot (left) and a histogram (right) of the available data. It is clear from all the graphs
that all sets of data have heavy left and right tails, and we has thus eliminated the estimators
associated with q = 0, due to their inconsistency. In the second one, we present at the left the
sample path of the ρ̂τ (k) estimates in (2.1), as function of k, for τ = 0 and τ = 1, together
with the sample paths of the β-estimators in (2.3), also for τ = 0 and τ = 1. At the right,
we present, for p = 1/(2n), the estimates of the V aRp, provided by the Qp|H , Qp|H and Q

(q)

p|H ,

q = 0.1, 0.2, with Qp|H and Q
(q)

p|H given in (1.9) and (1.12), respectively. Note that the sample
paths of the ρ-estimates associated to τ = 0 and τ = 1 lead us to choose, on the basis of any
stability criterion for large k and for all data sets, the estimate associated with τ = 0.

5.2.1 DJI data

From Figure 6, we immediately see that the underlying model has heavy left and right tails.
The number of positive elements in the available sample of log-returns is n0 = 867. Step 3. of
the Algorithm here presented led us to the ρ-estimate ρ̂ ≡ ρ̂0 = −0.72, obtained at the level
k1 = [n0.999

0 ] = 861. The associated β-estimate is β̂ ≡ β̂0 = 1.03 (see Figure 7, left). The
methodology is quite resistant to different choices of k1.

Regarding the VaR-estimation, note that whereas the Weissman-Hill estimator Qp|H(k), in
(1.9), is unbiased for the estimation of the tail index V aRp when the underlying model is a
strict Pareto model, it exhibits a relevant bias when we have only Pareto-like tails, as happens
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Figure 6: Box-and-whiskers (right) and Histogram (left) associated with the DJI data.

-2.5

-1.5

-0.5

0.5

1.5

2.5

150 350 550 750

! 

k

! 

ˆ " 
0
(k)

! 

ˆ " 
1
(k)

! 

ˆ " ̂  # 0
(k)

! 

ˆ " ̂  # 1
(k)

! 

ˆ " 0 = #0.72

! 

ˆ " 0 =1.03

5.0

10.0

15.0

0 450 900

! 

QH

! 

Q
H 

! 

k

    

! 

VaR
1/(2n)|H 

(0.1) = 7.89

    

! 

q = 0.1

    

! 

q = 0.1

    

! 

q = 0.2

    

! 

q = 0.2

  

! 

645
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estimates (right), for the DJI data.

here, and may be seen from Figure 7 (right). The quasi-PORT estimators, Q(q)

p|H , in (1.12),
based on shifted MVRB EVI-estimators, which are “asymptotically unbiased”, have a smaller
bias, exhibit more stable sample paths as function of k, and enable us to take a decision upon
the estimate of γ and VaR to be used, with the help of any heuristic stability criterion, like the
“largest run” suggested in Gomes et al. (2004), and written algorithmically in Section 5.1. In
this case, the largest run, in Step 5. of the Algorithm, is equal to 327 and was attained by the
estimate 8. We have then been led to the choice q = 0.1. Next, in Step 6. of the Algorithm, we
were led to the choice of an estimate 7.9 (with an associated frequency equal to 75). We finally
came to the choice k = 645 and to the final estimate V aR

1/(2n)|H(0.1) := Q
(0.1)

1/(2n)|H(645) = 7.89.
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5.2.2 MSFT data

Figure 8 and Figure 9 are similar to Figure 6 and Figure 7, respectively, now for the MSFT
data.
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Figure 8: Box-and-whiskers (right) and Histogram (left) associated with the MSFT data.

As can be inferred from Figure 8, the tails are again heavy. The number of positive elements
in the available sample of log-returns is now n0 = 882. Step 3. of the Algorithm here presented
led us to the ρ-estimate ρ̂ ≡ ρ̂0 = −0.72, obtained at the level k1 = [n0.999

0 ] = 876. The
associated β-estimate is β̂ ≡ β̂0 = 1.02 (see Figure 9, left).
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Figure 9: Estimates of the shape second-order parameter ρ and of the scale second-order parameter β (left) and quantile

estimates (right), for the MSFT data.

In this case, the largest run, in Step 5. of the Algorithm, is equal to 113 and was attained
by the estimate 19. We have then been led to the choice q0 = 0.2. Next, in Step 6. of the
Algorithm, we were led to the choice of an estimate 19.1 (with an associated frequency equal
to 24). We finally came to the choice k = 749 and to the final estimate V aR

1/(2n)|H(0.2) :=
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Q
(0.2)

1/(2n)|H(749) = 19.13, the values pictured in Figure 9, right.

5.2.3 EGBP data

Figure 10 and Figure 11 are again similar to Figure 6 and Figure 7, respectively, now for EGBP
data, and similar conclusions can be drawn.
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Figure 10: Box-and-whiskers (right) and Histogram (left) associated with the EGBP data.

The number of positive elements in the available sample of log-returns is now n0 = 835.
Step 3. of the Algorithm here presented led us to the ρ-estimate ρ̂ ≡ ρ̂0 = −0.67, obtained at
the level k1 = [n0.999

0 ] = 829. The associated β-estimate is β̂ ≡ β̂0 = 1.03 (see Figure 11, left).
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Figure 11: Estimates of the shape second-order parameter ρ and of the scale second-order parameter β (left) and

quantile estimates (right), for the EGBP data.

In this case, the largest run, in Step 5. of the Algorithm, is equal to 886 and was attained
by the estimate 3. We have then been led to the choice q0 = 0.1. Next, in Step 6. of the
Algorithm, we were led to the choice of an estimate 3.0 (with an associated frequency equal
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to 226). We finally came to the choice k = 494 and to the final estimate V aR
1/(2n)|H(0.1) :=

Q
(0.1)

1/(2n)|H(494) = 2.97, the values now pictured in Figure 11, right.

References
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