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1. Introduction

Let X = {Xn}n≥1 be a stationary random field on Zd
+, where Z+ is the set of all positive integers

and d ≥ 2. We shall consider the conditions and results for d = 2 since it is notationally simpler

and the proofs for higher dimensions follow analogous arguments. The inequality (i1, i2) ≤ (n1, n2)

means ik ≤ nk, k = 1, 2, and i
n

=
(

i1
n1

, i2
n2

)
.

For a family of real levels {un}n≥1 and a subset I of the rectangle of points Rn = {1, . . . , n1} ×
{1, . . . , n2} , we will denote the event {Xi ≤ un, i ∈ I} by {Mn(I) ≤ un} or simply by {Mn ≤ un}
when I = Rn. For each i = 1, 2, we say the pair I1 ⊂ Z2

+ and I2 ⊂ Z2
+ is in Si(l) if the distance

between Πi(I1) and Πi(I2) is greater or equal to l, where Πi, i = 1, 2, denote the cartesian projec-

tions.
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In this paper we study the convergence of the sequence of point processes of exceedances of un by a

random field, when there is ”high local dependence” in the random field so that one exceedance is

likely to be followed by others. The result is a clustering of exceedances, leading to a compounding

of events in the limiting point process.

To include cases where clustering occurs, we require a modest strengthening of the coordinatewise-

mixing condition introduced in [6] and [2], which exploits the past and future separation one

coordinate at a time.

Let Y ∈ BI(un) denote that the random variable Y is measurable to the σ−field generated by the

events {Xi ≤ un} with i ∈ I. We shall assume that there are sequences of integer valued constants

{kni
}ni≥1 , {lni

}ni≥1 , i = 1, 2, such that, as n = (n1, n2) −→∞, we have

(kn1 , kn2) −→∞,
(

kn1 ln1

n1
,

kn2 ln2

n2

)
−→ 0, (kn1∆1, kn1kn2∆2) −→ 0, (1.1)

where ∆i, i = 1, 2, are the components of the mixing coefficient defined as follows:

∆1 = sup {|E(Y Z)− E(Y )E(Z)| : Y ∈ BI1(un), Z ∈ BI2(un), 0 ≤ Y, Z ≤ 1} ,

where the supremum is taken over pairs I1 and I2 in S1(ln1),

∆2 = sup {|E(Y Z)− E(Y )E(Z)| : Y ∈ BI1(un), Z ∈ BI2(un), 0 ≤ Y, Z ≤ 1} ,

where the supremum is taken over pairs I1 and I2 in S2(ln2).

Then we say that X satisfies the ∆(un) -condition.

In section 2 we derive some results on the asymptotic independence of clustered exceedances. As a

corollary we find the maximum can be regarded as the maximum of a random field of approximately

independent variables. Therefore the extremal types theorem holds for such stationary random

fields.

Section 3 shows that any limiting point process for exceedances is necessarily a compound Poisson

process.

In section 4 we show that the limiting distributions of the clusters size and the maximum charac-

terize this compound Poisson process.

We end this section with an example which illustrate the theory.

In the proofs of our results we follow the main steps to obtain the limiting behavior of the ex-

ceedance point process for stationary sequences in [4], with a specific approach for the random

fields.

2



2. Asymptotic independence of clustered exceedances

Let rn =
(

n1

kn1
, n2

kn2

)
for some kn = (kn1 , kn2) satisfying (1.1). The exceedances of un by Xi

with i ∈ Jn,s = {(s1 − 1) rn1 + 1, . . . , s1rn1} × {(s2 − 1) rn2 + 1, . . . , s2rn2} , for some s ≤ kn, are

regarded as forming a cluster.

The following lemma shows that exceedances over disjoint rectangles behave asymptotically as

independent.

Lemma 2.1: Suppose that the condition ∆(un) holds for X and Jn,i = Jn1,i1 × Jn2,i2 , i1 =

1, . . . , kn1 , i2 = 1, . . . , kn2 , are kn1kn2 disjoint rectangles such that ]
⋃

i≤kn
Jn,i ∼ n1n2. Then, for

any non-negative continuous or step function f on [0, 1]2 ,

dn = E

(
exp

(
−
∑
i≤n

f

(
i

n

)
1{Xi>un}

))
−
∏
s≤kn

E

exp

− ∑
i∈Jn,s

f

(
i

n

)
1{Xi>un}

 −−−→
n→∞

0,

(2.1)

where 1A denotes the indicator of the event A.

Proof: Assume that f is not identically zero and that each Πs(Jn,i) consists of at least lns

integers, for each s = 1, 2. Let I
(s)

i be the interval of the largest elements in Πs(Jn,i), J∗n,i ={
j : j1 ∈ I

(1)

i ∨ j2 ∈ I
(2)

i

}
and In,i = Jn,i\J∗n,i.

It is sufficient to show that for any S ⊂ Z2
+, there exists a further path S′ ⊂ S through which

dn −−−→
n→∞

0.

Let cn =

(
inf I∈M(ln1 ,ln2 )E

(
exp

(
−
∑
i∈I

1{Xi>un}

)))kn1kn2

: n ∈ S

 , (2.2)

where M(ln1 , ln2) =
{
I ⊂Z2

+ : |Π1(I)| ≤ ln1 ∨ |Π2(I)| ≤ ln2

}
. Since the set given in (2.2) contains

infinitely many numbers in [0, 1]2 , there exists S′ ⊂ S such that, for some c, cn → c through S′.
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To conclude (2.1) we should show that dn −−−→
n→∞

0 through S′.

Consider separately the following two cases:

(a) If c = 1, then by the triangle inequality, dn is bounded in absolute value by∣∣∣∣∣∣E
exp

−∑
i≤n

f

(
i
n

)
1{Xi>un}

− E

exp

− ∑
s≤kn

∑
i∈In,s

f

(
i
n

)
1{Xi>un}

∣∣∣∣∣∣
+

∣∣∣∣∣∣E
exp

− ∑
s≤kn

∑
i∈In,s

f

(
i
n

)
1{Xi>un}

−
∏

s≤kn
E

exp

− ∑
i∈In,s

f

(
i
n

)
1{Xi>un}

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∏

s≤kn
E

exp

− ∑
i∈In,s

f

(
i
n

)
1{Xi>un}

−
∏

s≤kn
E

exp

− ∑
i∈Jn,s

f

(
i
n

)
1{Xi>un}

∣∣∣∣∣∣ (2.3)

Since f is bounded by some integer A, the first term in (2.3) is bounded by

E

∣∣∣∣∣∣
∏

s≤kn

exp

− ∑
i∈In,s

f

(
i
n

)
1{Xi>un}

∏
s≤kn

exp

− ∑
i∈J∗

n,s

f

(
i
n

)
1{Xi>un}


−
∏

s≤kn

E

exp

− ∑
i∈In,s

f

(
i
n

)
1{Xi>un}

∣∣∣∣∣∣


≤ E

∑
s≤kn

1− exp

− ∑
i∈J∗

n,s

f

(
i
n

)
1{Xi>un}


≤ A

∑
s≤kn

1− E

exp

− ∑
i∈J∗

n,s

1{Xi>un}


≤ Akn1kn2

(
1− inf I∈M(ln1 ,ln2 )exp

(
−
∑
i∈I

1{Xi>un}

))

which tends to zero when n →∞ along S′. In fact, c = 1 is equivalent to

kn1kn2

(
1− inf I∈M(ln1 ,ln2 )exp

(
−
∑
i∈I

1{Xi>un}

))
−→ 0.

The third term in (2.3) is bounded by

E

∑
s≤kn

1− exp

− ∑
i∈J∗

n,s

f

(
i

n

)
1{Xi>un}

 ,
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and the second term in (2.3) is bounded by kn1∆1 + kn1kn2∆2. Both majorants tend to zero and

we conclude (2.1) in this first case.

(b) c < 1

Let I ⊂ [0, 1]2 such that infx∈If(x) ≥ α > 0. Write nI = {(n1x1, n2x2) : x ∈ I} . For each n, in

each Jn,i ∩ nI which contains more than 4ln1ln2 integers place θ
(i)
n = θ

(i1)
n1 θ

(i2)
n2 rectangles R

(i)
n,j =

R
(i)
n,j1

× R
(i)
n,j2

, j1 = 1, . . . , θ
(i)
n1 , j2 = 1, . . . , θ

(i)
n2 of ln1ln2 integers, where the rectangles belong to

S1 (ln1) ∩ S2 (ln2) and the θ
(i1)
n1 and θ

(i2)
n2 are chosen so that θn

def
=
∑

i≤kn
θ

(i)
n satisfies

θn

kn1kn2

−→∞,

kn1∑
i1=1

θ(i1)
n1

∆1 −→ 0 and θn∆1∆2 −→ 0,

n →∞ through S′.

Then

E

(
exp

(
−
∑
i≤n

f

(
i

n

)
1{Xi>un}

))

≤ E

exp

−∑
s≤kn

∑
j≤θ

(s)
n

∑
i∈R

(s)
n,j

f

(
i

n

)
1{Xi>un}




≤ Eθn

exp

−α
∑

i∈{1,...,ln1}×{1,...,ln2}
f

(
i

n

)
1{Xi>un}


+

kn1∑
i1=1

θ(i1)
n1

∆1 + θn∆1∆2

≤

E

exp

− ∑
i∈{1,...,ln1}×{1,...,ln2}

1{Xi>un}





αθn

+ o(1)

≤ c
α θn

kn1kn2
n + o(1) = o(1).

The other term of dn is bounded by

∏
s≤kn

 ∏
j≤θ

(s)
n

E

exp

− ∑
i∈R

(s)
n,j

f

(
i

n

)
1{Xi>un}



+ o(1)

≤ c
α θn

kn1kn2
n + o(1)

which tends to zero as previously. Thus both terms in dn tend to zero, concluding the proof.

�
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As hold for point processes of exceedances over the real line, the Lemma 2.1 still holds with anf

instead f, where an are non-negative constants. Then, by taking f ≡ 1 and an →∞ in such way

that kn1kn2exp(−an) → 0 we get the lemma of asymptotic independence of maxima over disjoint

rectangles.

Lemma 2.2: Suppose that the random field X verifies the coordinatewise-mixing condition ∆(un)

and Jn,i = Jn1,i1 × Jn2,i2 , i1 = 1, . . . , kn1 , i2 = 1, . . . , kn2 , are kn1kn2 disjoint rectangles such that

]
⋃

i≤kn
Jn,i ∼ n1n2. Then

P (Mn ≤ un)−
∏
s≤kn

P (Mn (Jn,s) ≤ un) −−−→
n→∞

0.

�

Lemma 2.2 was proved in [6] (see also [7] and [8]) with a weaker mixing condition than ∆(un).

However, in this context it can be obtained as a corollary of Lemma 2.1.

3. Convergence of the sequence of point processes of ex-

ceedances

For applications in the extreme value theory, the main result of [4] on the sequence of point

processes of exceedances can be extended for

Sn(B) =
∑
i≤n

1{Xi>un}δ i
n
(B), B ⊂ [0, 1]2 .

Proposition 3.1: Suppose that ∆(un) holds for X and {Sn}n≥1 converges in distribution to

some point process S. Then S is stationary, has independent increments and therefore has Laplace

transform given by

LS(f) = exp

−α

∫
[0,1]2

f −
∫

[0,1]2

+∞∫
0

(
1− e−yf(x,y)

)
dν(y)d(x, y)

 ,
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with α = 0 and ν(.) is a finite measure concentrated on the positive integers Z+.

Proof: The stationarity of S follows from the stationarity of Sn and its convergence to S.

For each k ∈ Z+, let B1,B2, . . . ,Bk be disjoint rectangles in [0, 1]2 . Since, by Lemma 2.1,

L(S(B1),...,S(Bk))(t1, . . . , tk) = lim
n

LSn

(
k∑

j=1

tj1Bj

)

= lim
n

E

 k∏
j=1

exp

−tj
∑

i∈nBj

1{Xi>un}


= lim

n

k∏
j=1

LSn(Bj)(tj)

=
k∏

j=1

LS(Bj)(tj),

we conclude that S has independent increments.

The result follows, since each stationary process with independent increments has the following

representation

LS(f) = exp

−α

∫
[0,1]2

fd(x, z)−
∫

[0,1]2

+∞∫
0

(
1− e−yf(x,z)

)
dν(y)d(x, z)


and in the case that S is a point process we have α = 0 and ν(·) is a finite measure concentrated on

the positive integers Z+. �

By writting ν (0,∞) = ν and π for the probability distribution ν(.)
ν(0,∞)

, we get as a corollary that the

limiting point process is a compound Poisson point process with Poisson rate ν and distribution

of multiplicities π, being its Laplace transform

LS(f) = exp

(
−ν

∫
[0,1]2

(
1−

∞∑
j=1

π(j)e−jf(x,y)

)
d(x, y)

)
.

Thus S is a point process with masses j at points (x, y) where ((x, y) , j) are points of a Poisson

process in [0, 1]2 × (0,∞) with intensity measure νm× π, m denoting the Lebesgue measure.
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4. A sufficient condition for convergence of the sequence of

point processes of exceedances

The number of exceedances in the cluster Jn,s = {(s1 − 1) rn1 + 1, . . . , s1rn1}×{(s2 − 1) rn2 + 1, . . . , s2rn2}
is Sn

(
Jn,s

n

)
=
∑

i∈Jn,s
1{Xi>un} and the distribution πn of cluster sizes is defined by

πn(j) = P

∑
i≤rn

1{Xi>un} = j |
∑
i≤rn

∑
1{Xi>un} > 0

 , j = 1, 2, . . . .

Now we show that, under under the condition ∆(un), in the limit S of Sn the multiplicity distribution
π is the limit of the cluster size distribution πn and the rate ν can be obtained from the limit of zero
exceedances.

Proposition 4.1: Suppose that ∆(un) holds for X and {Sn}n≥1 converges in distribution to a compound
Poisson point process S with Poisson rate ν and distribution of multiplicities π. Then

ν = −log lim
n→∞

P (Mn ≤ un) (4.1)

and, if ν 6= 0,

π(j) = lim
n→∞

πn(j), j = 1, 2, . . . , (4.2)

for some rn =
(

n1
kn1

, n2
kn2

)
and kn = (kn1 , kn2) satisfying (1.1).

Proof: Since the Laplace Transform of S
(
[0, 1]2

)
is given by

E
(
exp

(
−tS

(
[0, 1]2

)))
= exp

(
−ν

(
1−

∞∑
k=1

π(k)e−kt

))
then

lim
n→∞

P (Mn ≤ un) = lim
n→∞

P
(
Sn

(
[0, 1]2

)
= 0
)

= P
(
S
(
[0, 1]2

)
= 0
)

= lim
t→∞

LS([0,1]2)(t)

= lim
t→∞

exp

(
−ν

(
1−

∞∑
k=1

π(k)e−kt

))
= exp(−ν).
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To show the other convergence, i.e., π(j) = limn→∞ πn(j), note that, by Lemma 2.1,

lim
n→∞

E
(
exp

(
−tSn

(
[0, 1]2

)))
= lim

n→∞
Ekn1kn2

exp

−t
∑
i≤rn

1{Xi>un}


and, by the lemma of asymptotic independence of maxima over disjoint rectangles, we have

E

exp

−t
∑
i≤rn

1{Xi>un}


= 1− P (Mrn > un)

1−
∞∑

j=1

exp (−tj) πn(j)


= 1− ν

kn1kn2

1−
∞∑

j=1

exp (−tj) πn(j)

 (1 + o(1)).

Since

Ekn1kn2

exp

−t
∑
i≤rn

1{Xi>un}

 ≈ E
(
exp

(
−tSn

(
[0, 1]2

)))

converges then by considering αn = ν
(
1−

∑∞
j=1 exp (−tj) πn(j)

)
,

(
1− αn

kn1kn2

)kn1kn2

≈ Ekn1kn2

exp

−t
∑
i≤rn

1{Xi>un}


converges, so αn converges and consequently, for each t,

∑∞
j=1 exp (−tj) πn(j) converges, i.e., there exists

π′ such that π′(j) = limn→∞ πn(j), j = 1, 2, ....

Hence we have

lim
n→∞

E
(
exp

(
−tSn

(
[0, 1]2

)))
= lim

n→∞
Ekn1kn2

exp

−t
∑
i≤rn

1{Xi>un}


= lim

n→∞

(
1− αn

kn1kn2

)kn1kn2

= exp

−ν

1−
∞∑

j=1

exp (−tj) π′(j)

 .
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Since we showed that

lim
n→∞

E
(
exp

(
−tSn

(
[0, 1]2

)))
= exp

−ν

1−
∞∑

j=1

exp (−tj) π(j)


it follows that π′ = π. �

The following technical result is necessary to obtain Proposition 4.2 and corresponds to Lemma 4. in [4]
for stationary sequences. Both proofs follow the same arguments with obvious modifications.

Lemma 4.1: Suppose that limn→∞ P (Mn ≤ un) = exp(−ν), ν 6= 0, and πn −−−→
n→∞

π. For a fixed step

function f on [0, 1]2, define a function Tn on [0, 1]2 by

Tn(t) =

{
1− E

(
exp

(
−
∑

j∈Jn,s
f
(

j
n

)
1{Xj>un}

))
if nt ∈ Jn,s, s ≤ kn

0 if t = 0 ∨ nt ∈ Rn − ∪s≤knJn,s

where Jn,s = ((s1 − 1) rn1 , s1rn1 ]× ((s2 − 1) rn2 , s2rn2 ] .
Then, as n →∞,

(i) n1n2
rn1rn2

Tn(t) is uniformly bounded ;

(ii) n1n2
rn1rn2

∫
[0,1]2 Tn(t)dt −→ν

∫
[0,1]2 (1−

∑
exp(−jf(t))π(j))dt.

�

In the following proposition we present a sufficient condition for the convergence of the point process of
exceedances based on the convergence of the probability of non-occurrence of exceedances of the level un

by the variables Xi of the random field X and the cluster size distribution πn.

Proposition 4.2: Suppose that the random field X satisfies the condition ∆(un), and (4.1) and (4.2)
hold for some rn =

(
n1
kn1

, n2
kn2

)
and kn = (kn1 , kn2) satisfying (1.1).

Then {Sn}n≥1 converges in distribution to a compound Poisson point process S with Poisson rate ν and
distribution of multiplicities π.
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Proof: It suffices to show that LSn(f) −−−→
n→∞

LS(f) for each non-negative step function f on [0, 1]2 .

With the notation of the previous lemma and by using Lemma 2.1, it follows

log LSn(f) = log E

exp

−∑
j≤n

f

(
j
n

)
1{Xj>un}


≈ log

∏
s≤kn

E

exp

− ∑
j∈Jn,s

f

(
j
n

)
1{Xj>un}


=

n1n2

rn1rn2

∑
s≤kn

rn1rn2

n1n2
log(1− Tn(t))

= − n1n2

rn1rn2

∫
[0,1]2

−log(1− Tn(t))dt.

Since for large n, Tn(t) −→ 0 and

|− log (1− Tn(t))− Tn(t)| ≤ T 2
n(t) −→ 0

uniformly in t, it follows from Lemma 4.1 that

lim
n→∞

log LSn(f) = lim
n→∞

− n1n2

rn1rn2

∫
[0,1]2

Tn(t)dt

= −ν

∫
[0,1]2

(
1−

∑
exp(−jf(t)

)
π(j)dt,

= log LS(f).

�

The Poisson rate ν and the limiting multiplicity π present additional interesting properties for levels
u ≡ u(τ) =

{
u

(τ)
n

}
n≥1

satisfying n1n2P (X1 > u
(τ)
n ) −−−→

n→∞
τ > 0. By writting S

(τ)
n for the point process

of exceedances of u
(τ)
n , if un,1 ≡ u

(τ)
n,1 and un,2 ≡ u

(τ)
n,2, that is the two levels are normalized for the same

τ, then for the corresponding point processes of exceedances S
(τ)
n,1 and S

(τ)
n,2 it holds

P
(
S

(τ)
n,1 6= S

(τ)
n,2

)
≤ n1n2

∣∣∣P (X1 ≤ u
(τ)
n,1)− P (X1 ≤ u

(τ)
n,2)
∣∣∣ −−−→

n→∞
0.

Therefore we can use any convenient normalized levels.

The following result states that if the point process of exceedances of the normalized levels
{

u
(τ)
n

}
has a limit for one τ it has a limit for all τ and the limit point process is a compound Poisson process
with rate ν = θτ with θ independent of τ. This parameter θ is called the extremal index of the random
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field X, and was introduced in [2]. Specifically, X has extremal index θ if, for each τ > 0, there exists{
u

(τ)
n

}
n≥1

and

lim
n→∞

P
(
Mn ≤ u

(τ)
n

)
= lim

n→∞
P
(
S

(τ)
n

(
[0, 1]2

)
= 0
)

= e−θτ .

Proposition 4.3: Suppose that, for each τ > 0, ∆(u(τ)) holds for X.

If, for some τ0 > 0,
{

S
(τ0)
n

}
n≥1

converges in distribution to some point process S(τ0), then for all

τ > 0,
{

S
(τ)
n

}
n≥1

converges in distribution to a compound Poisson process with Poisson rate ν = θτ,

ν = −log limn→∞ P
(
Mn ≤ u

(τ)
n

)
, 0 ≤ θ ≤

(∑
j≥1 jπ(j)

)−1
≤ 1, θ and π being independent of τ.

Proof: Assume without loss of generality that τ1 = 1.Then, by Proposition 4.1.,

LS(1)(f) = exp

(
−θ

∫
[0,1]2

(
1−

∞∑
k=1

π(k)e−kf(t)dt

))

with θ = −log limn→∞ P
(
Mn ≤ u

(1)
n

)
.

To show that the result holds for each τ > 0 it suffices to prove that, for each τ > 0, there exists a δ > 0
such that for each rectangle I ⊂ [0, 1]2 with m(I) > δ, S

(τ)
n (I) converges in distribution to a compound

Poisson random variable with Laplace transform exp
{
−θτm(I)(1−

∑∞
k=1π(k)e−kt)

}
.

This is sufficient, since any finite number of disjoint rectangles Ii, 1 ≤ i ≤ k, in [0, 1]2 , can be decomposed
into disjoint rectangles Iij , 1 ≤ j ≤ ni, 1 ≤ i ≤ k, each of which has measure lesser than δ, and thus by
Lemma 2.1

lim
n→∞

E

(
exp

(
−

k∑
i=1

siS
(τ)
n (Ii)

))

= lim
n→∞

E

exp

 k∑
i=1

ni∑
j=1

siS
(τ)
n (Iij)


= lim

n→∞

k∏
i=1

ni∏
j=1

E
(
exp

(
−siS

(τ)
n (Iij)

))
.

To show the existence of such δ, first let τ < 1 and assume for convenience that u
(1)
n′ ≡ u

(τ)
n , where

n′ =
(

n1
τ1

, n2
τ2

)
, τ1τ2 = τ.

12



Hence ∣∣∣E (exp(−sS
(τ)
n (I)

)
− E

(
exp

(
−sS

(1)
n′ ([0,m(I1)τ1]× [0,m(I2)τ2])

))∣∣∣
≤ (4m(I1) + 4m(I2))max

{
1− F

(
u

(τ)
n

)
, 1− F

(
u

(1)
n′

)}
−→ 0.

Therefore

lim
n→∞

E
(
exp

(
−sS

(τ)
n (I)

))
= lim

n→∞
E
(
exp

(
−sS

(1)
n′ ([0,m(I1)τ1]× [0,m(I2)τ2])

))
= exp(−θτm(I)

1−
∑

j

exp(js)π(j)

 .

This proves the required with δ = 1. For τ > 1, the proof is identical except that δ must be 1
τ .

By Fatou’s Lemma it follows that

τ = lim
n

n1n2P (X1 ≤ un) = lim
n

E
(
S(τ)

n

(
[0, 1]2

))
≥ E

(
S(τ)

(
[0, 1]2

))
= θτ

∞∑
j=1

jπ(j),

concluding the remaining stated inequality. �

If θ = 1 the compound Poisson process reduces to a simple Poisson process. For example, i.i.d. random
fields have extremal index θ = 1. Much research has been made, by specific approach, on the asymptotic
behavior of the maximum of a stationary Normal field under a variety of conditions ([10]). The classical
limit still holds and the extremal index is equal to 1. A value θ < 1 indicates clustering of exceedances
of un, as we illustrate in the next example.

Example: For each i = (i1, i2) ∈ Z2
+, let bs(i), s = 1, 2, . . . , 8, be the neighbors of i defined as b1(i) =

(i1 + 1, i2) , b2(i) = i + 1, b3(i) = (i1, i2 + 1) , b4(i) = (i1 − 1, i2 + 1) , b5(i) = (i1 − 1, i2) , b6(i) = i − 1,

b7(i) = (i1, i2 − 1) and b8(i) = (i1 + 1, i2 − 1) . For each s = 1, 2, . . . , 8, we shall denote the s-crossing
event

{
Xi ≤ un, Xbs(i) > un

}
by Bi,bs(i),n where Xbs(i) = −∞ if bs(i) /∈ Z2

+.

Let Y = {Yn}n≥0 be an i.i.d. random field with common distribution function FY and define

Xn = max
{
Yn, Yb5(n), Yb6(n), Yb7(n)

}
, n ≥ 1.

Let {un}n≥1 be such that n1n2 (1− FY (un)) −−−→
n→∞

τ > 0. Then, we have un ≡ u
(τ1)
n for X with τ1 = 4τ

and X has extremal index θ = 1
4 . Moreover π(4) = limn→∞ πn(4) = 1 and clusters are asymptoti-

cally squares of four exceedances. For each s = 1, 2, . . . , 8, in each cluster we can´t expect more than

13



an s-crossing event. �

In [3] (see also [9]) we present local dependence conditions under which the extremal index can be
calculated from the joint distribution of a finite number of variables.
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