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6201 001 Covilhã, Portugal
E-mail: lpereira@mat.ubi.pt

Abstract: In this paper we study the limiting distribution of the location of the maximum
generated by a stationary random field satisfying a long range weak dependence for each
coordinate at a time.

Keywords: Location of maxima, exceedances, long range dependence, random field, ex-
tremal index.

1. INTRODUCTION

Let X =
{
Xn : n ∈ N2

}
be a random field on N2, where N is the set of all positive integers. For a

family of real levels {un}n≥1 and a subset I of the rectangle of points Rn = {1, . . . , n1}× {1, . . . , n2},
we will denote the event {Xi ≤ un : i ∈ I} by Mn(I) or simply by Mn when I =Rn. If I = ∅ then
Mn(I) = −∞.

For each i = 1, 2, we say the pair I ⊂ N2 and J ⊂N2 is in Si(l) if the distance between Πi(I) and
Πi(J) is greater or equal to l, where Πi, i = 1, 2, denote the cartesian projections.

Given a set of locations
{
j(1), . . . , j(n)

}
, j(i) =

(
j
(i)
1 , j

(i)
2

)
, for each location j(i) let us considere

the set of “predecessors” of j(i), say Pj(i) , as the set Pj(i) =
{
j(s) : j

(s)
1 ≤ j

(i)
1 ∧ j

(s)
2 ≤ j

(i)
2

}
−

{
j(i)

}
.

Let = =
{
j ∈ N2 : Xj = Mn

}
, P̃ =

{
j ∈ = : ∀j′ ∈ =,#Pj ≤ #Pj′

}
and Ln the location of Mn.

We define

Ln =


j(1) if = =

{
j(1)

}
j(2) if #= > 1 ∧ P̃ =

{
j(2)

}
j(3) if #P̃ > 1 ∧ j(3) ∈ = ∧ ∀j(s) ∈ =, j(s) 6= j(3),Π1(j(3)) < Π1(j(s))

.

We shall assume that X is a stationary random field and that there are constants {an > 0}n≥1

and {bn}n≥1 such that, for each x ∈ R,

P
(
a−1
n (Mn − bn) ≤ x

)
−−−→
n→∞

H(x),

where H is a nondegenerate distribution function.
If X is a random field of independent and identically distributed random variables or if it satisfies

the coordinatewise-mixing condition ∆(un(x)) from Leadbetter et al. (1988) (see also Choi, H. (2002)),
with un(x) = anx + bn, then X verifies the Extremal Types Theorem, id est, G is Gumbel, Weibull or
a Fréchet distribution.

Accordingly Choi, H. (2002), we shall say that X has extremal index θ, 0 ≤ θ ≤ 1, if for each τ >

0 there exists
{

u
(τ)
n

}
n≥1

such that, as n −→ ∞, n1n2P
(
X1 > u

(τ)
n

)
−→ τ and P

(
Mn ≤ u

(τ)
n

)
−→

exp(−θτ).
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Under local restrictions on the oscillations of the values of a random field, Ferreira, H. et al.
(2005) and Pereira, L. et al. (2006) (see also Pereira, L. et al. (2005)) compute the extremal index of
the random field from the joint distribution of a finite number of variables.

In this paper we show that the normalized location of the maximum of a stationary random
field with extremal index θ ∈ ]0, 1] satisfying a slight generalization of ∆(un)−condition converges to
a uniform variable on [0, 1]2 and is asymptotically independent of the height of the maximum. We
used the ideas, presented in Pereira, L. et al. (2002), to obtain the limiting distribution of the location
of the maximum generated by a stationary sequence, with a specific approach for the random fields.

The result obtained allow us to select a set of observations of {Xi : i ∈ Rn} , for example
{Xi : i ∈ {1, . . . , [n1ε1]} × {1, . . . , [n2ε2]}} with ε1, ε2 ∈ (0, 1] , by ensuring that this set contains the
maximum value of the stationary random field with a pre-determined probability.

2. LIMIT DISTRIBUTION OF THE LOCATION OF THE MAXIMUM GENERATED
BY A STATIONARY RANDOM FIELD

We suppose that X satisfies a generalization of the coordinatewise-mixing condition ∆(un) in-
troduced in Leadbetter et al. (1988), which exploits the past and future separation one coordinate at
a time, and enable us to deal with the joint behavior of maxima over disjoint rectangles.

Definition 2.1. Let X be a stationary random field and
{

u
(i)
n

}
n≥1

, i = 1, 2, sequences of real num-

bers. The coordinatewise-mixing condition ∆2(u
(1)
n , u

(2)
n ) is said to hold for X if there exist sequences

of integer valued constants {kni}ni≥1 , {lni}ni≥1 , i = 1, 2, such that, as n = (n1, n2) −→∞, we have

(2.1) (kn1 , kn2) −→∞,
(

kn1 ln1
n1

,
kn2 ln2

n2

)
−→ 0,

(
kn1∆

(1)
n,ln1

, kn1kn2∆
(2)
n,ln2

)
−→ 0,

where ∆(i)
n,lni

, i = 1, 2, are the components of the mixing coefficient defined as follows:

∆(1)
n,ln1

= sup
∣∣∣P (

Mn(I1) ≤ u(i)∗

n ,Mn(I2) ≤ u(i)∗

n

)
− P

(
Mn(I1) ≤ u(i)∗

n

)
P

(
Mn(I2) ≤ u(i)∗

n

)∣∣∣ ,

where u
(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
and the supremum is taken over pairs I1 and I2 in S1(ln1) such that

|Π1(I2)| ≤ n1
kn1

,

∆(2)
n,ln2

= sup
∣∣∣P (

Mn(I1) ≤ u(i)∗

n ,Mn(I2) ≤ u(i)∗

n

)
− P

(
Mn(I1) ≤ u(i)∗

n

)
P

(
Mn(I2) ≤ u(i)∗

n

)∣∣∣ ,

where u
(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
and the supremum is taken over pairs I1 and I2 in S2(ln2) such that Π1(I1) =

Π1(I2) and |Π2(I2)| ≤ n2
kn2

.

For u
(1)
n ≡ u

(2)
n ≡ un condition ∆2(u

(1)
n , u

(2)
n ) reduces to the coordinatewise-mixing condition

∆(un) (Leadbetter et al. (1988) and Choi, H. (2002)).

Lemma 2.1.: Let
{

u
(i)
n

}
n≥1

, i = 1, 2, be sequences of real numbers such that

(2.2) n1n2P
(
X1 > u

(i)
n

)
−−−→
n→∞

τi, i = 1, 2,

where τ1, τ2 < ∞. If the stationary random field X satisfies ∆2(u
(1)
n , u

(2)
n ) for sequences {kni}ni≥1 ,

{lni}ni≥1 ,
{

u
(i)
n

}
n≥1

, i = 1, 2, satisfying (2.1), and the rectangles Vs,t ⊂ Rn, s = 1, . . . , kn1 and



t = 1, . . . , kn2 , are disjoint, then∣∣∣∣∣∣P
kn1⋂

s=1

kn2⋂
t=1

⋂
i∈Vs,t

Xi ≤ un,s,t

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈Vs,t

Xi ≤ un,s,t

∣∣∣∣∣∣ −−−→n→∞
0,

where, for each s and t, un,s,t is any one of u
(1)
n , u

(2)
n .

Proof: From (2.1) and (2.2), for the purpose of the above convergence, we can assume that Π1(Vs,t) >
ln1 or Π2(Vs,t) > ln2 . If all the pairs of rectangles Vs,t are in S1(ln1) ∪ S2(ln2) then we have∣∣∣∣∣∣P

kn1⋂
s=1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣P
kn1⋂

s=1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

P

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
+

∣∣∣∣∣∣
kn1∏
s=1

P

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤

kn1−1∑
j=1

∣∣∣∣∣∣P
kn1⋂

s=j

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

 j−1∏
s=1

P

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

−

P

 kn1⋂
s=j+1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

 j∏
s=1

P

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
+

kn1∑
s=1

kn2−1∑
j=1

∣∣∣∣∣∣P
kn2⋂

t=j

⋂
i∈Vs,t

{Xi ≤ un,s,t}

 j−1∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

−

P

 kn2⋂
t=j+1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

 j∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤

kn1−1∑
j=1

∣∣∣∣∣∣P
kn1⋂

s=j

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

− P

 kn1⋂
s=j+1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

×

P

 ⋂
i∈Vj,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
+

kn1∑
s=1

kn2−1∑
j=1

∣∣∣∣∣∣P
kn2⋂

t=j

⋂
i∈Vs,t

{Xi ≤ un,s,t}

− P

 kn2⋂
t=j+1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

×

P

 ⋂
i∈Vs,j

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤ kn1∆

(1)
n,ln1

+ kn1kn2∆
(2)
n,ln2

= o(1).

If some pair of rectangles Vs,t are not in S1(ln1)∪ S2(ln2) we can eliminate ln1 columns or ln2 rows in
Vs,t in order to obtain V∗

s,t ⊂ Vs,t, s = 1, . . . , kn1 , t = 1, . . . , kn2 , and we obtain∣∣∣∣∣∣P
kn1⋂

s=1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤

∣∣∣∣∣∣P
kn1⋂

s=1

kn2⋂
t=1

⋂
i∈Vs,t

{Xi ≤ un,s,t}

− P

kn1⋂
s=1

kn2⋂
t=1

⋂
i∈V∗

s,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣ +



∣∣∣∣∣∣P
kn1⋂

s=1

kn2⋂
t=1

⋂
i∈V∗

s,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈V∗

s,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣ +

∣∣∣∣∣∣
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈V∗

s,t

{Xi ≤ un,s,t}

−
kn1∏
s=1

kn2∏
t=1

P

 ⋂
i∈Vs,t

{Xi ≤ un,s,t}

∣∣∣∣∣∣
≤ 2kn1kn2 ln1 ln2max

(
P

(
X1 > u(1)

n

)
, P

(
X1 > u(2)

n

))
+ kn1kn2∆

(2)
n,ln2

= o(1).

The next Lemma shows that, for each ε1, ε2 ∈ (0, 1] , the events
{

Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≤ u

(1)
n

}
and

{
Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ u

(2)
n

}
are asymptotically independent, and is the key to ob-

tain the limiting distribution of the location of maximum. It follows as a consequence of Lemma 2.1..

Lemma 2.2.: Suppose that the stationary random field X satisfies ∆2(u
(1)
n , u

(2)
n ), where the levels

u
(i)
n , i = 1, 2, satisfy (2.2). Then, for each ε1, ε2 ∈ (0, 1] ,

P
(
Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≤ u(1)

n ,Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ u(2)

n

)
−P

(
Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≤ u(1)

n

)
P

(
Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ u(2)

n

)
→ 0,

as n →∞.

We finish by proving that the normalized location of the maximum is asymptotically uniform
and independent of its height.

Proposition 2.1.: Let X be a stationary random field with extremal index 0 < θ ≤ 1 and {an > 0}n≥1

and {bn}n≥1 sequences of real numbers such that

P (Mn ≤ anx + bn) −−−→
n→∞

Gθ(x),

with a nondegenerate distribution function G.

If for x1, x2 ∈ R and u
(i)
n = un(xi) = anxi + bn, i = 1, 2, X satisfies the condition ∆2(u

(1)
n , u

(2)
n ) then,

for each ε1, ε2 ∈ (0, 1] ,

P
(
Ln ∈

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
, a−1

n (Mn − bn) ≤ x
)
−−−→
n→∞

ε1ε2G
θ(x).

Proof: For each ε1, ε2 ∈ (0, 1] , it holds

P
(
Ln ∈

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
, a−1

n (Mn − bn) ≤ x
)

= P
(
Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≥ Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
,Mn ≤ anx + bn

)
= P

(
Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≤ anx + bn

)
By applying Lemma 2.2. with xi ∈ R and u

(i)
n = anxi + bn, i = 1, 2, the above probability converges

to P
(
V (1) ≤ U (1) ≤ x

)
, where U (1) and V (1) are independent random variables whose distributions

can be obtained as follows:
By attending that

P
(
Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ un(t)

)
= P (Mn ({1, . . . , [n1(1− ε1)]} × {1, . . . , n2}) ≤ un(t))×

P (Mn ({1, . . . , [n1ε1)]} × {1, . . . , [n2(1− ε2)]}) ≤ un(t)) + o(1),



X has extremal index θ and, for each t ∈ R,

[n1(1− ε1)]n2P (X1 > un(t)) −−−→
n→∞

−(1− ε1) log G(t),

[n1ε1] [n2(1− ε2)]P (X1 > un(t)) −−−→
n→∞

−ε1(1− ε2) log G(t),

and

[n1ε1] [n2ε2]P (X1 > un(t)) −−−→
n→∞

−ε1ε2 log G(t),

then

(2.3) P
(
V (1) ≤ t

)
= lim

n→∞
P

(
Mn

(
Rn \

(
[1, n1ε1]× [1, n2ε2] ∩ N2

))
≤ un(t)

)
= G(1−ε1ε2)θ(t),

and

(2.4) P
(
U (1) ≤ t

)
= lim

n→∞
P

(
Mn

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
≤ un(t)

)
= Gε1ε2θ(t).

Therefore, from (2.3) and (2.4), we get

lim
n→∞

P
(
Ln ∈

(
[1, n1ε1]× [1, n2ε2] ∩ N2

)
, a−1

n (Mn − bn) ≤ x
)

= P
(
V (1) ≤ U (1) ≤ x

)
=

∫
]−∞,x]

Gθ(1−ε1ε2)(t)dGε1ε2(t)

= ε1ε2G
θ(x).
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