The asymptotic location of the maximum of a stationary random field

Pereira, Luísa¹

CMUBI, University of Beira Interior, Department of Mathematics Rua Marquês d'Ávila e Bolama 6201 001 Covilhã, Portugal E-mail: lpereira@mat.ubi.pt

Abstract: In this paper we study the limiting distribution of the location of the maximum generated by a stationary random field satisfying a long range weak dependence for each coordinate at a time.

Keywords: Location of maxima, exceedances, long range dependence, random field, extremal index.

1. INTRODUCTION

Let $\mathbf{X} = \{X_{\mathbf{n}} : \mathbf{n} \in \mathbb{N}^2\}$ be a random field on \mathbb{N}^2 , where \mathbb{N} is the set of all positive integers. For a family of real levels $\{u_{\mathbf{n}}\}_{\mathbf{n} \geq \mathbf{1}}$ and a subset \mathbf{I} of the rectangle of points $\mathbf{R}_{\mathbf{n}} = \{1, \ldots, n_1\} \times \{1, \ldots, n_2\}$, we will denote the event $\{X_{\mathbf{i}} \leq u_{\mathbf{n}} : \mathbf{i} \in \mathbf{I}\}$ by $M_{\mathbf{n}}(\mathbf{I})$ or simply by $M_{\mathbf{n}}$ when $\mathbf{I} = \mathbf{R}_{\mathbf{n}}$. If $\mathbf{I} = \emptyset$ then $M_{\mathbf{n}}(\mathbf{I}) = -\infty$.

For each i = 1, 2, we say the pair $\mathbf{I} \subset \mathbb{N}^2$ and $\mathbf{J} \subset \mathbb{N}^2$ is in $S_i(l)$ if the distance between $\Pi_i(\mathbf{I})$ and $\Pi_i(\mathbf{J})$ is greater or equal to l, where $\Pi_i, i = 1, 2$, denote the cartesian projections.

Given a set of locations $\{\mathbf{j}^{(1)}, \dots, \mathbf{j}^{(n)}\}$, $\mathbf{j}^{(i)} = (j_1^{(i)}, j_2^{(i)})$, for each location $\mathbf{j}^{(i)}$ let us considere the set of "predecessors" of $\mathbf{j}^{(i)}$, say $\mathcal{P}_{\mathbf{j}^{(i)}}$, as the set $\mathcal{P}_{\mathbf{j}^{(i)}} = \{\mathbf{j}^{(s)} : j_1^{(s)} \le j_1^{(i)} \land j_2^{(s)} \le j_2^{(i)}\} - \{\mathbf{j}^{(i)}\}$.

Let $\Im = \{ \mathbf{j} \in \mathbb{N}^2 : X_{\mathbf{j}} = M_{\mathbf{n}} \}, \ \widetilde{\mathcal{P}} = \{ \mathbf{j} \in \Im : \forall \mathbf{j}' \in \Im, \# \mathcal{P}_{\mathbf{j}} \leq \# \mathcal{P}_{\mathbf{j}'} \}$ and $L_{\mathbf{n}}$ the location of $M_{\mathbf{n}}$. We define

$$L_{\mathbf{n}} = \begin{cases} \mathbf{j}^{(1)} & \text{if } \mathfrak{F} = \{\mathbf{j}^{(1)}\} \\ \mathbf{j}^{(2)} & \text{if } \#\mathfrak{F} > 1 \land \widetilde{\mathcal{P}} = \{\mathbf{j}^{(2)}\} \\ \mathbf{j}^{(3)} & \text{if } \#\widetilde{\mathcal{P}} > 1 \land \mathbf{j}^{(3)} \in \mathfrak{F} \land \forall \mathbf{j}^{(s)} \in \mathfrak{F}, \mathbf{j}^{(s)} \neq \mathbf{j}^{(3)}, \Pi_{1}(\mathbf{j}^{(3)}) < \Pi_{1}(\mathbf{j}^{(s)}) \end{cases}$$

We shall assume that **X** is a stationary random field and that there are constants $\{a_{\mathbf{n}} > 0\}_{\mathbf{n} \ge 1}$ and $\{b_{\mathbf{n}}\}_{\mathbf{n} > 1}$ such that, for each $x \in \mathbb{R}$,

$$P\left(a_{\mathbf{n}}^{-1}(M_{\mathbf{n}} - b_{\mathbf{n}}) \le x\right) \xrightarrow[\mathbf{n} \to \infty]{} H(x),$$

where H is a nondegenerate distribution function.

If **X** is a random field of independent and identically distributed random variables or if it satisfies the coordinatewise-mixing condition $\Delta(u_{\mathbf{n}}(x))$ from Leadbetter *et al.* (1988) (see also Choi, H. (2002)), with $u_{\mathbf{n}}(x) = a_{\mathbf{n}}x + b_{\mathbf{n}}$, then **X** verifies the Extremal Types Theorem, *id est*, *G* is Gumbel, Weibull or a Fréchet distribution.

Accordingly Choi, H. (2002), we shall say that **X** has extremal index θ , $0 \le \theta \le 1$, if for each $\tau > 0$ there exists $\left\{u_{\mathbf{n}}^{(\tau)}\right\}_{\mathbf{n} \ge \mathbf{1}}$ such that, as $\mathbf{n} \longrightarrow \infty$, $n_1 n_2 P\left(X_{\mathbf{1}} > u_{\mathbf{n}}^{(\tau)}\right) \longrightarrow \tau$ and $P\left(M_{\mathbf{n}} \le u_{\mathbf{n}}^{(\tau)}\right) \longrightarrow exp(-\theta\tau)$.

 $^{^1 \}rm Work$ partially supported by FCT/POCI2010/FEDER (EXMIXMOD project of CMUBI)

Under local restrictions on the oscillations of the values of a random field, Ferreira, H. *et al.* (2005) and Pereira, L. *et al.* (2006) (see also Pereira, L. *et al.* (2005)) compute the extremal index of the random field from the joint distribution of a finite number of variables.

In this paper we show that the normalized location of the maximum of a stationary random field with extremal index $\theta \in [0, 1]$ satisfying a slight generalization of $\Delta(u_n)$ -condition converges to a uniform variable on $[0, 1]^2$ and is asymptotically independent of the height of the maximum. We used the ideas, presented in Pereira, L. *et al.* (2002), to obtain the limiting distribution of the location of the maximum generated by a stationary sequence, with a specific approach for the random fields.

The result obtained allow us to select a set of observations of $\{X_i : i \in \mathbf{R_n}\}$, for example $\{X_i : i \in \{1, \ldots, [n_1\varepsilon_1]\} \times \{1, \ldots, [n_2\varepsilon_2]\}\}$ with $\varepsilon_1, \varepsilon_2 \in (0, 1]$, by ensuring that this set contains the maximum value of the stationary random field with a pre-determined probability.

2. LIMIT DISTRIBUTION OF THE LOCATION OF THE MAXIMUM GENERATED BY A STATIONARY RANDOM FIELD

We suppose that **X** satisfies a generalization of the coordinatewise-mixing condition $\Delta(u_n)$ introduced in Leadbetter *et al.* (1988), which exploits the past and future separation one coordinate at a time, and enable us to deal with the joint behavior of maxima over disjoint rectangles.

Definition 2.1. Let **X** be a stationary random field and $\left\{u_{\mathbf{n}}^{(i)}\right\}_{\mathbf{n}\geq\mathbf{1}}$, i = 1, 2, sequences of real numbers. The coordinatewise-mixing condition $\Delta_2(u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)})$ is said to hold for **X** if there exist sequences of integer valued constants $\{k_{n_i}\}_{n_i>1}$, $\{l_{n_i}\}_{n_i>1}$, i = 1, 2, such that, as $\mathbf{n} = (n_1, n_2) \longrightarrow \infty$, we have

(2.1)
$$(k_{n_1}, k_{n_2}) \longrightarrow \infty, \left(\frac{k_{n_1}l_{n_1}}{n_1}, \frac{k_{n_2}l_{n_2}}{n_2}\right) \longrightarrow \mathbf{0}, \left(k_{n_1}\Delta_{\mathbf{n}, l_{n_1}}^{(1)}, k_{n_1}k_{n_2}\Delta_{\mathbf{n}, l_{n_2}}^{(2)}\right) \longrightarrow \mathbf{0},$$

where $\Delta_{\mathbf{n},l_{n_i}}^{(i)}$, i = 1, 2, are the components of the mixing coefficient defined as follows:

$$\Delta_{\mathbf{n},l_{n_{1}}}^{(1)} = \sup \left| P\left(M_{\mathbf{n}}(\mathbf{I}_{1}) \le u_{\mathbf{n}}^{(i)^{*}}, M_{\mathbf{n}}(\mathbf{I}_{2}) \le u_{\mathbf{n}}^{(i)^{*}} \right) - P\left(M_{\mathbf{n}}(\mathbf{I}_{1}) \le u_{\mathbf{n}}^{(i)^{*}} \right) P\left(M_{\mathbf{n}}(\mathbf{I}_{2}) \le u_{\mathbf{n}}^{(i)^{*}} \right) \right|,$$

where $u_{\mathbf{n}}^{(i)^*} \in \left\{ u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)} \right\}$ and the supremum is taken over pairs \mathbf{I}_1 and \mathbf{I}_2 in $S_1(l_{n_1})$ such that $|\Pi_1(\mathbf{I}_2)| \leq \frac{n_1}{k_{n_1}}$,

$$\Delta_{\mathbf{n},l_{n_{2}}}^{(2)} = \sup \left| P\left(M_{\mathbf{n}}(\mathbf{I}_{1}) \le u_{\mathbf{n}}^{(i)^{*}}, M_{\mathbf{n}}(\mathbf{I}_{2}) \le u_{\mathbf{n}}^{(i)^{*}} \right) - P\left(M_{\mathbf{n}}(\mathbf{I}_{1}) \le u_{\mathbf{n}}^{(i)^{*}} \right) P\left(M_{\mathbf{n}}(\mathbf{I}_{2}) \le u_{\mathbf{n}}^{(i)^{*}} \right) \right|,$$

where $u_{\mathbf{n}}^{(i)^*} \in \left\{ u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)} \right\}$ and the supremum is taken over pairs \mathbf{I}_1 and \mathbf{I}_2 in $S_2(l_{n_2})$ such that $\Pi_1(\mathbf{I}_1) = \Pi_1(\mathbf{I}_2)$ and $|\Pi_2(\mathbf{I}_2)| \leq \frac{n_2}{k_{n_2}}$.

For $u_{\mathbf{n}}^{(1)} \equiv u_{\mathbf{n}}^{(2)} \equiv u_{\mathbf{n}}$ condition $\Delta_2(u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)})$ reduces to the coordinatewise-mixing condition $\Delta(u_{\mathbf{n}})$ (Leadbetter *et al.* (1988) and Choi, H. (2002)).

Lemma 2.1.: Let $\left\{u_{\mathbf{n}}^{(i)}\right\}_{\mathbf{n}\geq\mathbf{1}}$, i=1,2, be sequences of real numbers such that

(2.2)
$$n_1 n_2 P\left(X_1 > u_{\mathbf{n}}^{(i)}\right) \xrightarrow[\mathbf{n} \to \infty]{} \tau_i, \ i = 1, 2,$$

where $\tau_1, \tau_2 < \infty$. If the stationary random field **X** satisfies $\Delta_2(u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)})$ for sequences $\{k_{n_i}\}_{n_i \geq 1}$, $\{l_{n_i}\}_{n_i \geq 1}$, $\{u_{\mathbf{n}}^{(i)}\}_{\mathbf{n} \geq 1}$, i = 1, 2, satisfying (2.1), and the rectangles $\mathbf{V}_{s,t} \subset \mathbf{R}_{\mathbf{n}}$, $s = 1, \ldots, k_{n_1}$ and

 $t = 1, \ldots, k_{n_2}$, are disjoint, then

$$\left| P\left(\bigcap_{s=1}^{k_{n_1}k_{n_2}}\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}}X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\right) - \prod_{s=1}^{k_{n_1}k_{n_2}}P\left(\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}}X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\right) \right| \xrightarrow[\mathbf{n}\to\infty]{} 0,$$

where, for each s and t, $u_{\mathbf{n},s,t}$ is any one of $u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)}$.

Proof: From (2.1) and (2.2), for the purpose of the above convergence, we can assume that $\Pi_1(\mathbf{V}_{s,t}) > l_{n_1}$ or $\Pi_2(\mathbf{V}_{s,t}) > l_{n_2}$. If all the pairs of rectangles $\mathbf{V}_{s,t}$ are in $S_1(l_{n_1}) \cup S_2(l_{n_2})$ then we have

$$\begin{split} & \left| P\left(\bigcap_{s=lt=1}^{k_{n_{1}}k_{n_{2}}} \bigcap_{s=lt=1}^{k_{n_{2}}k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - \prod_{s=lt=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right| \\ & \leq \left| P\left(\bigcap_{s=lt=1}^{k_{n_{1}}k_{n_{2}}} \bigcap_{t=1}^{k_{n_{2}}k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - \prod_{s=lt=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right| \\ & + \left| \prod_{s=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{i=1}^{k_{n_{1}}k_{n_{2}}} \bigcap_{t=1}^{k_{n_{1}}k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - \prod_{s=lt=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right| \\ & \leq \sum_{j=1}^{k_{n_{1}}-1} \left| P\left(\bigcap_{i=j=1}^{k_{n_{1}}k_{n_{2}}} \bigcap_{i=j\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \prod_{s=1}^{j-1} P\left(\bigcap_{t=1}^{k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\bigcap_{s=j+1}^{k_{n_{1}}k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \prod_{s=1}^{j-1} P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\bigcap_{t=j+1}^{k_{n_{1}}k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right| \\ & \leq \sum_{s=1}^{k_{n_{1}}-1} \left| P\left(\bigcap_{i=j\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \prod_{t=1}^{j-1} P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right| \\ & \leq \sum_{j=1}^{k_{n_{1}}-1} \left| P\left(\bigcap_{i=j=1}^{k_{n_{2}}} \bigcap_{i=j\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right) \right| \\ & \leq \sum_{j=1}^{k_{n_{1}}-1} \left| P\left(\bigcap_{i=j=1}^{k_{n_{2}}} \bigcap_{i=j\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\left(\bigcap_{i\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right) \\ & + \sum_{s=1}^{k_{n_{1}}-1} \left| P\left(\bigcap_{i=j=1}^{k_{n_{2}}} \bigcap_{i=j\in\mathbf{V}_{s,t}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) - P\left(\left(\bigcap_{i=j+1}^{k_{n_{2}}} \bigcap_{i=j+1}^{k_{n_{2}}} \left\{ X_{i} \leq u_{\mathbf{n},s,t} \right\} \right) \right) \\ & \leq k_{n_{1}} \Delta_{n,n_{n_{1}}}^{(1)} + k_{n_{1}} k_{n_{2}} \Delta_{n,n_{n_{2}}}^{(2)} = o(1). \end{aligned}$$

If some pair of rectangles $\mathbf{V}_{s,t}$ are not in $S_1(l_{n_1}) \cup S_2(l_{n_2})$ we can eliminate l_{n_1} columns or l_{n_2} rows in $\mathbf{V}_{s,t}$ in order to obtain $\mathbf{V}_{s,t}^* \subset \mathbf{V}_{s,t}, s = 1, \ldots, k_{n_1}, t = 1, \ldots, k_{n_2}$, and we obtain

$$\left| P\left(\bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}}\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}} \{X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\}\right) - \prod_{s=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}} \{X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\}\right) \right|$$

$$\leq \left| P\left(\bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}}\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}} \{X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\}\right) - P\left(\bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}}\bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}} \{X_{\mathbf{i}}\leq u_{\mathbf{n},s,t}\}\right) \right| +$$

$$\left| P\left(\bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}} \bigcap_{s=1}^{k_{n_{1}}k_{n_{2}}} \{X_{\mathbf{i}} \le u_{\mathbf{n},s,t}\} \right) - \prod_{s=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}^{*}} \{X_{\mathbf{i}} \le u_{\mathbf{n},s,t}\} \right) \right| + \\ \left| \prod_{s=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}^{*}} \{X_{\mathbf{i}} \le u_{\mathbf{n},s,t}\} \right) - \prod_{s=1}^{k_{n_{1}}k_{n_{2}}} P\left(\bigcap_{\mathbf{i}\in\mathbf{V}_{s,t}} \{X_{\mathbf{i}} \le u_{\mathbf{n},s,t}\} \right) \right| \\ \le 2k_{n_{1}}k_{n_{2}}l_{n_{1}}l_{n_{2}}max \left(P\left(X_{\mathbf{1}} > u_{\mathbf{n}}^{(1)}\right), P\left(X_{\mathbf{1}} > u_{\mathbf{n}}^{(2)}\right) \right) + k_{n_{1}}k_{n_{2}}\Delta_{\mathbf{n},l_{n_{2}}}^{(2)} = o(1).$$

The next Lemma shows that, for each $\varepsilon_1, \varepsilon_2 \in (0, 1]$, the events $\left\{ M_{\mathbf{n}} \left([1, n_1 \varepsilon_1] \times [1, n_2 \varepsilon_2] \cap \mathbb{N}^2 \right) \le u_{\mathbf{n}}^{(1)} \right\}$ and $\left\{ M_{\mathbf{n}} \left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_1 \varepsilon_1] \times [1, n_2 \varepsilon_2] \cap \mathbb{N}^2 \right) \right) \le u_{\mathbf{n}}^{(2)} \right\}$ are asymptotically independent, and is the key to obtain the limiting distribution of the location of maximum. It follows as a consequence of Lemma 2.1..

Lemma 2.2.: Suppose that the stationary random field **X** satisfies $\Delta_2(u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)})$, where the levels $u_{\mathbf{n}}^{(i)}, i = 1, 2$, satisfy (2.2). Then, for each $\varepsilon_1, \varepsilon_2 \in (0, 1]$,

$$P\left(M_{\mathbf{n}}\left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right) \leq u_{\mathbf{n}}^{(1)}, M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right) \leq u_{\mathbf{n}}^{(2)}\right)$$
$$-P\left(M_{\mathbf{n}}\left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right) \leq u_{\mathbf{n}}^{(1)}\right) P\left(M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right) \leq u_{\mathbf{n}}^{(2)}\right) \to 0,$$

as $\mathbf{n} \to \infty$.

We finish by proving that the normalized location of the maximum is asymptotically uniform and independent of its height.

Proposition 2.1.: Let X be a stationary random field with extremal index $0 < \theta \le 1$ and $\{a_n > 0\}_{n \ge 1}$ and $\{b_n\}_{n > 1}$ sequences of real numbers such that

$$P\left(M_{\mathbf{n}} \le a_{\mathbf{n}}x + b_{\mathbf{n}}\right) \xrightarrow[\mathbf{n} \to \infty]{} G^{\theta}(x),$$

with a nondegenerate distribution function G. If for $x_1, x_2 \in \mathbb{R}$ and $u_{\mathbf{n}}^{(i)} = u_{\mathbf{n}}(x_i) = a_{\mathbf{n}}x_i + b_{\mathbf{n}}$, $i = 1, 2, \mathbf{X}$ satisfies the condition $\Delta_2(u_{\mathbf{n}}^{(1)}, u_{\mathbf{n}}^{(2)})$ then, for each $\varepsilon_1, \varepsilon_2 \in (0, 1]$,

$$P\left(L_{\mathbf{n}} \in \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right), a_{\mathbf{n}}^{-1}(M_{\mathbf{n}} - b_{\mathbf{n}}) \leq x\right) \xrightarrow[\mathbf{n} \to \infty]{} \varepsilon_{1}\varepsilon_{2}G^{\theta}(x).$$

Proof: For each $\varepsilon_1, \varepsilon_2 \in (0, 1]$, it holds

$$P\left(L_{\mathbf{n}} \in \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right), a_{\mathbf{n}}^{-1}(M_{\mathbf{n}} - b_{\mathbf{n}}) \leq x\right)$$

$$= P\left(M_{\mathbf{n}}\left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right) \geq M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right), M_{\mathbf{n}} \leq a_{\mathbf{n}}x + b_{\mathbf{n}}\right)$$

$$= P\left(M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right) \leq M_{\mathbf{n}}\left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right) \leq a_{\mathbf{n}}x + b_{\mathbf{n}}\right)$$

By applying Lemma 2.2. with $x_i \in \mathbb{R}$ and $u_{\mathbf{n}}^{(i)} = a_{\mathbf{n}}x_i + b_{\mathbf{n}}$, i = 1, 2, the above probability converges to $P(V^{(1)} \leq U^{(1)} \leq x)$, where $U^{(1)}$ and $V^{(1)}$ are independent random variables whose distributions can be obtained as follows:

By attending that

$$P\left(M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}}\setminus\left([1,n_{1}\varepsilon_{1}]\times[1,n_{2}\varepsilon_{2}]\cap\mathbb{N}^{2}\right)\right)\leq u_{\mathbf{n}}(t)\right)$$

= $P\left(M_{\mathbf{n}}\left(\{1,\ldots,[n_{1}(1-\varepsilon_{1})]\}\times\{1,\ldots,n_{2}\}\right)\leq u_{\mathbf{n}}(t)\right)\times$
 $P\left(M_{\mathbf{n}}\left(\{1,\ldots,[n_{1}\varepsilon_{1})]\}\times\{1,\ldots,[n_{2}(1-\varepsilon_{2})]\}\right)\leq u_{\mathbf{n}}(t)\right)+o(1),$

X has extremal index θ and, for each $t \in \mathbb{R}$,

$$\begin{split} & \left[n_1(1-\varepsilon_1)\right] n_2 P\left(X_1 > u_{\mathbf{n}}(t)\right) \xrightarrow[\mathbf{n} \to \infty]{} - (1-\varepsilon_1) \log G(t), \\ & \left[n_1 \varepsilon_1\right] \left[n_2(1-\varepsilon_2)\right] P\left(X_1 > u_{\mathbf{n}}(t)\right) \xrightarrow[\mathbf{n} \to \infty]{} - \varepsilon_1(1-\varepsilon_2) \log G(t), \end{split}$$

and

$$[n_1\varepsilon_1] [n_2\varepsilon_2] P (X_1 > u_n(t)) \xrightarrow[\mathbf{n} \to \infty]{} -\varepsilon_1\varepsilon_2 \log G(t),$$

then

(2.3)
$$P\left(V^{(1)} \le t\right) = \lim_{\mathbf{n} \to \infty} P\left(M_{\mathbf{n}}\left(\mathbf{R}_{\mathbf{n}} \setminus \left([1, n_{1}\varepsilon_{1}] \times [1, n_{2}\varepsilon_{2}] \cap \mathbb{N}^{2}\right)\right) \le u_{\mathbf{n}}(t)\right) = G^{(1-\varepsilon_{1}\varepsilon_{2})\theta}(t),$$

and

(2.4)
$$P\left(U^{(1)} \le t\right) = \lim_{\mathbf{n} \to \infty} P\left(M_{\mathbf{n}}\left([1, n_1\varepsilon_1] \times [1, n_2\varepsilon_2] \cap \mathbb{N}^2\right) \le u_{\mathbf{n}}(t)\right) = G^{\varepsilon_1\varepsilon_2\theta}(t).$$

Therefore, from (2.3) and (2.4), we get

$$\lim_{\mathbf{n}\to\infty} P\left(L_{\mathbf{n}}\in\left([1,n_{1}\varepsilon_{1}]\times[1,n_{2}\varepsilon_{2}]\cap\mathbb{N}^{2}\right),a_{\mathbf{n}}^{-1}(M_{\mathbf{n}}-b_{\mathbf{n}})\leq x\right)$$

$$= P\left(V^{(1)}\leq U^{(1)}\leq x\right)$$

$$= \int_{]-\infty,x]} G^{\theta(1-\varepsilon_{1}\varepsilon_{2})}(t)dG^{\varepsilon_{1}\varepsilon_{2}}(t)$$

$$= \varepsilon_{1}\varepsilon_{2}G^{\theta}(x).$$

REFERENCES

Choi, H. (2002). *Central limit theory and extremes of random fields*. Phd Dissertation in Univ. of North Carolina at Chapel Hill.

Ferreira, H. and Pereira, L. (2005). How to compute the extremal index of stationary random fields. Pre-print Univ. of Lisbon.

Leadbetter and Rootzén, H. (1988) On extreme values in stationary random fields. *Stochastic processes and related topics*, 275-285, Trends Math. Birkhauser Boston, Boston.

Pereira, L. and Ferreira, H. (2002) The asymptotic locations of the maximum and minimum of stationary sequences. *Journal of Statistical Planning and Inference*, 104, 287-295.

Pereira, L. and Ferreira, H. (2005). Extremes of quasi-independent random fields and clustering of high values. *Proceedings of 8th WSEAS International conference on Applied Mathematics.*

Pereira, L. and Ferreira, H. (2006). Limiting crossing probabilities of random fields. *Journal of Applied Probability*, 3, 884-891.