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Frailty models have been proposed in order to investigate other
sources of variation when the observed covariates do not fully explain
the dissimilarities of the individuals in study. The frailty term can be
partitioned into two or more terms in order to assess various types of
frailty within the same individual. For instance, the frailty associated
with a person may be divided into two random effects describing sep-
arately genetic and environmental factors, which are actually shared
with other people such as mother, father, etc. The aim is to present a
Bayesian analysis of additive survival models with shared or correlated
frailty terms. An analysis of the adoption data described by Sørensen
et al. (1988) motivates and illustrates the frailty models developed,
using Markov Chain Monte Carlo methods for estimating quantities of
interest.
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1 INTRODUCTION

In regression analysis for survival data, as the observed covariates are not
fully explain the variation from individual to individual, a random effect
(frailty) is included into the hazard function to take account that unob-
served heterogeneity, e.g., genetic predisposition within families. In addi-
tion, the frailty can be partitioned into two or more terms in order to assess
various types of frailty within the same individual. For example, the frailty
of a person may be divided into two random effects describing separately
genetic and environmental factors, which are shared with other people such
as mother, father, etc.
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Shared or correlated frailty models are herein analyzed for additive sur-
vival models (Aalen, 1980) from a Bayesian perspective (Silva and Amaral-
Turkman, 2004). The additive hazards models have been presented both
as a diagnostic tool and as a useful alternative to multiplicative hazards
models, especially when the hazard functions are not proportional.

This work is organized as follows. Section 2 describes Aalen’s additive
model based on counting processes, as well as an additive frailty model
with shared and correlated frailty terms. Section 3 deals with the Bayesian
analysis of the additive frailty model by using Markov chain Monte Carlo
(MCMC) methods for estimating quantities of interest. In section 4, we illus-
trate the methodology introduced here through the analysis of the adoption
data described by Sørensen et al. (1988).

2 A SHARED FRAILTY ADDITIVE MODEL

Aalen (1980) introduced an additive survival model defining the intensity
of a counting process N(t) - number of occurrences of a particular event up
to time t - as

I(t|z) = Y (t)
�

α0(t) +
p
∑

q=1

αq(t)zq

�

, (1)

where Y (t) indicates whether the individual is in risk at time t, α0(t) is
the baseline intensity for individuals, and αq(t) is the regression function
that may reveal changes in the influence of the covariate zq over time, q=
1, . . . , p.

In order to account for the unobserved heterogeneity, a random effect
(w) is introduced into the intensity (1) additively (Rocha, 1996). Silva and
Amaral-Turkman (2004) proposed a Bayesian approach for that new model
that is therein so-called additive frailty model. Note that α0(t) in that new
intensity is interpreted as the baseline intensity for individuals with “null”
frailty (w=0).

The frailty term w for each individual may be partitioned into two or
more terms, e.g., w = w1+ · · ·+wk, where w j are (correlated) frailty terms
shared with other individuals, j=1, . . . , k. For genetic setting, the frailty of
a child may be associated with genes shared with mother and father (see
Figure 1).

Assuming a multivariate counting process N(t) = (N1(t), . . . , Nn(t)) for
n right-censored individuals (under a history F t−), shared frailty additive
models are here defined by intensity function of Ni(t), i.e.,

Ii(t|zi,w) = Yi(t)
�

α0(t) +
p
∑

q=1

αq(t)ziq + a′iw
�

, (2)
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Figure 1: Graph of a frailty model for genetic data.

where w = (w1, . . . , wk)′ is the frailty vector and ai = (ai1, . . . , aik)′ is the
vector of frailty indicator functions for the i-th individual, i=1, . . . , n (Silva
and Amaral-Turkman, 2004). Petersen (1998) also showed a version of the
model (2) for multiplicative frailty intensities.

3 AN BAYESIAN APPROACH OF THE CURRENT MODEL

Partitioning the time axis into m disjoint intervals B j = [t j−1, t j), j=1, . . . , m,
independent gamma prior processes are assumed for the increments of the
cumulative functions Ωq(t) =

∫∞
0
αq(u)du, i.e., the increment Ωq j ≡ dΩq(t)

in B j has gamma distribution with shape and scale parameters cqΩ
∗
q j and cq,

j=1, . . . , m, q=0, . . . , p. Notice that Ω∗q j is interpreted as a prior guess of
Ωq j with degree of precision cq.

Let D = {(Ni(t), Yi(t),zi)} be the survival data with n right-censored
individuals. Assigning independent gamma priors for Ωq(t), the posterior
of the frailty model (2), denoted by π(Ω,w,δ|D), is proportional to

m
∏

j=1





n
∏

i=1

�

I
Ni j

i j e−Ii j

�

p
∏

q=0

�

Ω
cqΩ

∗
q j−1

q j e−cqΩq j

�



 τ(w|δ)τ(δ), (3)

where Ii j ≡ Ii(t j)d t j = Yi j(t)(z′iΩ j + a′iw d t j), Ni j ≡ dNi(t j), Ω = (Ω11, . . . ,
Ωpm)′, Ω∗q j = rq d t j, rq is a proposed value for αq(t), d t j = t j− t j−1, τ(w|δ)
is the frailty distribution and τ(δ) is a prior for hyperparameter δ.

The frailty distribution is traditionally gamma with hyperparameter δ,
which measures the degree of unobserved heterogeneity through, e.g., via
its standard deviation (σW ). The posterior (3) is awkward to work with,
since the marginal posterior distributions of Ω and δ are not easy to obtain
explicitly. Nevertheless, these posteriors can be evaluated using Markov
chain Monte Carlo (MCMC) methods (Spiegelhalter et al., 2007).
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4 ILLUSTRATION

Using the model (3) for the adoption data (Sørensen et al., 1988) with 125
families 1924-1987, the intensities of death by infection (e.g., pneumonia)
for biological mother, son and adoptive mother are, respectively,

Ii1(t|w) = Yi1(t)[α01(t) +wi1 +wi2]
Ii2(t|w) = Yi2(t)[α02(t) +wi1 +wi3 +wi4]
Ii3(t|w) = Yi3(t)[α03(t) +wi3 +wi5].

(4)

For simplicity, the posterior (3) is here associated with gamma frailties
(1,δl), non-informative priors for δl , 65 intervals B j ’s, cq=0.001 and rq=
0.1, q=1,2, 3, l=1, . . . , 5. After 6000 iterations simulated, including 1000
for burn-in period, some quantities of interest were estimated for the shared
additive frailty model (4).

parameter mean s.d. CI(2.5%) CI (97.5%)
σGs

0.022 0.0021 0.0178 0.0261
σEs

0.023 0.0023 0.0191 0.0281
σ2

Es
/σ2

Gs
1.203 0.3337 0.6772 1.9830

σ2
EGns
/σ2

Gs
0.895 0.2633 0.4796 1.4970

σ2
EGns
/(σ2

Gs
+σ2

Es
) 0.407 0.1058 0.2397 0.6564

Table 1: Estimates of variance components for frailties.

The estimates in Table 1 indicate little unobserved heterogeneity both
shared genetic (bσGs

) and environment (bσEs
) factors, shared environment

factors explain 20.3% more of the variability than the shared genes, while
non-shared effects have 10.5% less importance than genes.
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