
R program to implement the DPOT model
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Abstract: Threshold methods, based on fitting a stochastic model to the excesses over
a threshold, were developed under the acronym POT (peaks over threshold). To eliminate
the tendency to clustering of violations, a model-based approach within the POT framework
that uses the durations between excesses as covariates was proposed by Araújo Santos and
Fraga Alves (2012) and denoted by DPOT. In this work, to implement the DPOT model, a
program written in the R language is presented and validated with a simulation study.
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1 Introduction

Value-at-Risk (VaR) aggregates several components of risk into a single number
and has emerged as the standard measure in quantitative risk management (for a
detailed discussion of VaR, see Jorion, 2000). In this work we present a program
written in the R language to implement a VaR model denoted by DPOT VaR.

The POT method is based on the excesses over a high threshold u and on
the Pickands-Balkema-de Haan Theorem (see Balkema and de Haan (1974) and
Pickands(1975)). For distributions in the maximum domain of attraction of an ex-
treme value distribution, this theorem states that when u converges to the right end
point of the distribution, the excess distribution converges to the Generalized Pareto
Distribution (GPD):

Gγ,σ(y) =
{

1− (1 + γy/σ)−1/γ , γ 6= 0
1− exp (−y/σ) , γ = 0,

(1.1)

where σ > 0, and the support is y ≥ 0 when γ ≥ 0 and 0 ≤ y ≤ −σ/γ when
γ < 0. Smith (1987) proposed a tail estimator based on a GPD approximation to
the excess distribution. Inverting this estimator, an equation is obtained, which
allows to calculate the VaR forecast. With financial time series, a relation between
the excesses and the durations between excesses is usually observed. Araújo Santos
and Fraga Alves (2012) propose using this dependence to improve the risk forecasts
with duration-based POT (DPOT) models. For estimation, these models use the
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durations, at time of excess i, as the preceding v excesses (di,v). At time t, dt,v

denotes the duration until t as the preceding v excesses.

The DPOT model assumes the GPD for the excess above u, such that

Yt ∼ GPD
(
γ, σt = α/(dt,v)c

)
, (1.2)

where γ and α are parameters to be estimated, whereas c plays the role of a tuning
parameter. Inverting the tail estimator based on the conditional GPD, the following
expression is obtained to calculate the DPOT VaR forecast:

V̂aR
DPOT (v,c)

t+1|t (p) = u +
α̂

γ̂(dt,v)c

(( n

nxp

)γ̂
− 1

)
, (1.3)

where nx denotes the sample size, n the number of excesses, γ̂ and α̂ are estimators
of γ and α. Applying the maximum likelihood theory to estimate the parameters,
the log likelihood obtained is

log L(γ, α) = log
n∏

i=v

fYi(yi)

= −
n∑

i=v

log
( α

(di,v)c

)
−

(1
γ

+ 1
) n∑

i=v

log
(
1 +

γ

α
yi(di,v)c

)
. (1.4)

Empirical findings in Araújo Santos and Fraga Alves (2012) suggest v = 3 and
that the method is robust for different values of c in the interval between 0.7 and
0.8. In section 2 we present a R program to implement the VaR model presented in
equation (1.3) and in section 3 the program is validated with a simulation study.

2 R program

After running the R code presented below the following message appears:
In log(1 + gamma * y/(alpha1 * (1/x)^c)) : NaNs produced. The reason for
this message is that the optimizer choose values based on a deterministic search
algorithm and the Warning messages occur when the values do not obey to 0 ≤ yi ≤
−σt/γ when γ < 0 (the support when gamma is negative). When this happens, we
have logarithm of a negative number and then the message NaN, but the optimizer
continue to other iterations choosing other values until reach convergence.

#### For running this example we suggest to download the daily

#### prices of SP 500 index with at least the first 1001 days,

#### compute the returns and save them in the file

#### with the name SP_500.txt

#### Choose coverage <- 0.01 to forecast VaR(0.01)

2



#### Choose c <- 0.75 to implement the DPOT(c=0.75)

#### Choose th <- 0.1 to implement a threshold such that

#### 10% of the values are larger than the threshold

coverage <- 0.01

c <- 0.75

th <- 0.1

#### log-likelihood function which takes three arguments: theta is

#### the vector of parameters, y the excesses and x the durations:

gpdlik <- function(theta,y,x){

alpha1 <- theta[1]

gamma <- theta[2]

n<-length(y)

logl<- -sum(log(alpha1*(1/x)^c))-(1/gamma+1)*sum(log(1+gamma*y/(alpha1*(1/x)^c)))

return(-logl)

}

#### We read the log returns from the text file SP_500.txt.

#### Then we compute the symmetric of log returns and choose the

#### returns from day 1 until day 1000, to illustrate the

#### calculation of one-day VaR forecast for day 1001

xx <- read.table("SP_500.txt")

a <- xx*-1 a <- a[,1]

b <- a[1:1000] #from day 1 until day 1000

len <- length(b)

#### Calculation of excesses and durations

#### since the preceding 3 excesses

b_sort <-sort(b)

u <-b_sort[floor(th*len)]

bb <- b[b>u]

bb <- bb-u

duration <- 1

j <- 1

xexc <- rep(0,times=length(bb))

for(ii in 1:len){

if (b[ii]>u){

xexc[j] <- duration

duration <- 1

j <- j+1

}

else {

duration <-duration+1

}

}

lag1_xexc <-rep(0,times=length(bb))

d2 <-rep(0,times=length(xexc))

limit <- length(xexc)-1

xxxx <- xexc[1:limit]

lag1_xexc <- c(0, xxxx)

limit2 <- length(xexc)-2

xxxx <- xexc[1:limit2]

lag2_xexc <- c(0, 0, xxxx)
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limit3 <- length(bb)

bb <- bb[3:limit3]

xexc <- xexc[3:limit3]

lag1_xexc <- lag1_xexc[3:limit3]

lag2_xexc <- lag2_xexc[3:limit3]

d3 <- xexc+lag1_xexc+lag2_xexc

#### durations since the preceding 3 excesses (v=3)

#### We use the optim with Nelder and Mead algorithm to

#### maximize the log likelihood

model <- optim(c(0.5,0.5), gpdlik, y=bb, x=d3)

mle1 <- model$par[1]

mle2 <- model$par[2]

#### With the VaR DPOT estimator we compute the forecast

delta <- mle1*(1/(duration+xexc[length(xexc)]+xexc[length(xexc)-1]))^c

var_forecast <- u + ((th/coverage)^mle2-1)*(delta/mle2)

#### One-day-ahead VaR forecast:

var_forecast

3 Simulation study for validation of the R program

To validation of the R program we perform a simulation study. First, a geomet-
ric process is considered for the durations such that E[Di] = 10. Additionally, a
discrete Weibull process is considered for the durations with the shape parameter
equal to 0.75, implying some tendency to clustering, and such that E[Di] ' 10.
For the excesses process we assume the DPOT with the specification proposed in
(1.3), with v = 3, c = 0.75 and the parametrization α = 5.28 and γ = 0.208. This
parametrization corresponds to the parameters estimates obtained with the estima-
tion procedure applied to the returns of S&P 500 index from January 4, 1950 to
May 18, 2010. See Section 3.3 in n Araújo Santos and Fraga Alves (2012).

• Geometric process

Di ∼ Geometric(q = 0.9)

Yi ∼ GPD(γ = 0.208, σi = 5.28/(di + di−1 + di−2)0.75) (3.1)

• Discrete Weibull process

Di ∼ discrete Weibull(θ = 0.75, q = 0.81)

Yi ∼ GPD(γ = 0.208, σi = 5.28/(di + di−1 + di−2)0.75) (3.2)

The simulated mean values and root of mean square error (RMSE) for the pro-
cesses (3.1) and (3.2) are presented in Figure 5, using 5000 simulations in each
sample size (n = 50, 100, 150, 200, 250, 300). The results suggest that the estimation
procedure works well, although some bias is found in the smaller sample sizes. This
kind of bias for smaller samples is usual with ML estimators. We only show results
for the parametrization α = 5.28 and γ = 0.208, but with further simulations similar
results hold for other values of α and γ.
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(a) Simulated E(γ̂). Process (3.1).
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(b) Simulated RMSE(γ̂). Process (3.1).
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(c) Simulated E(α̂). Process (3.1).

50 100 150 200 250 300

0.0
0.5

1.0
1.5

n

(d) Simulated RMSE(α̂). Process (3.1).
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(e) Simulated E(γ̂). Process (3.2).
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(f) Simulated RMSE(γ̂). Process (3.2).
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(g) Simulated E(α̂). Process (3.2).
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(h) Simulated RMSE(α̂). Process (3.2).

Figure 3.1: Simulated mean values and RMSE of γ̂ and α̂ with n =
50, 100, 150, 200, 250, 300.
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