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Abstract

Under appropriate dependence conditions, we obtain the asymptotic independence of the joint lo-
cations of the largest extremes and the joint locations of the smallest extremes of a stationary sequence
{Xn}n≥1. The result obtained allows us to censure a sample, by ensuring that the set of observa-
tions that we selected contains the k largest and r smallest order statistics of the stationary sequence
{Xn}n≥1, with a pre-determined probability. We present an example of a 2-dependent sequence for
which we can apply this result.
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1. Introduction

For a sequence of random variables X = {Xn}n≥1 and a family of real levels {un}n≥1 we will
denote the kth upper and the rth lower order statistics among Xi, i ∈ I, with I ⊂ Rn = {1, 2, . . . , n},
respectively by M

(k)
n (I) and M

(r)
n (I) or simply by M

(k)
n and M

(r)
n , when I = Rn.

We define the locations of M
(k)
n and M

(r)
n , denoted respectively by L

(k)
n and L

(r)
n , by

L
(k)
n = min

{
1 ≤ j ≤ n : M

(k)
n = Xj

}
and

L(r)
n = min

{
1 ≤ j ≤ n : M (r)

n = Xj

}
.

Under appropriate dependence conditions Pereira et al. (2002) obtained the asymptotic inde-
pendence of the locations of maximum and minimum of a stationary sequence X.

Our aim, in this paper, is to obtain the asymptotic independence of the joint locations of the k

largest order statistics and the joint locations of the s smallest order statistics.
The result obtained allows us to censure a sample, by ensuring that the set of observations that

we selected contains the k largest and r smallest order statistics of the stationary sequence X, with a
pre-determined probability.

The rest of the paper is organized as follows: in section 2 we prove that under appropriate
dependence conditions we have the asymptotic independence of an upper and a lower order statistics
of a stationary sequence X, which will be used in section 3. The main result in this section generalizes
Davis´s result (1984) since it allows the presence of clusters of high values and clusters of low values
in X.

In section 3, we deal with the asymptotic distribution of the joint locations of the k largest and r

smallest order statistics, as n −→∞. We prove under appropriate dependence conditions that for each
ε1, ε2 ∈ [0, 1] ,

(
M

(1)

n (Rn \ ([1, nε1] ∩ N)),M
(k)

n ([1, nε1] ∩ N)
)

and
(
M (1)

n (Rn \ ([1, nε2] ∩ N)),M (r)
n ([1, nε2] ∩ N)

)



under linear normalization, are asymptotically independent, which, jointly with the asymptotic inde-
pendence of a lower and an upper order statistics, will lead to the asymptotic independence of the
joint locations of the k upper order statistics and the joint locations of the s lower order statistics.

2. Asymptotic independence of a lower and an upper extremes

In Davis (1984) it was proved that if a stationary sequence X satisfies appropriate long range
and local dependence conditions and the sequences X and −X = {−Xn}n≥1 have extremal indexes
equal to one, then we have the asymptotic independence of a lower and an upper extremes.

In this section we generalize this result of Davis since we allow the presence of clusters of high
values and clusters of low values in X.

The type of long range and local dependence conditions suitable in the present setting is a slight
generalization of condition D(X, un, vn) (Davis, 1982, 1983, 1984) and the C(X, un, vn) condition
(Davis, 1982, 1983, 1984).

Definition 2.1.: Let X be a stationary sequence of random variables and {un}n≥1 , {vn}n≥1

sequences of real numbers. For each 1 ≤ i ≤ j, set Bj
i (un, vn) as the σ−algebra generated by the

events {vn < Xs ≤ un} , i ≤ s ≤ j, and, for 1 ≤ l ≤ n− 1

(2.1) α∗n,l = max
1≤k≤n−l

{
|P (A ∩B)− P (A)P (B)| : A ∈ Bk

1(un, vn), B ∈ Bn
k+l(un, vn)

}
.

The condition ∆∗ (X, un, vn) is said to hold if there exists a sequence ln = o(n), as n −→ ∞, such
that

(2.2) α∗n,ln −−−→n→∞
0.

By assuming (2.2), when we take in (2.1) only the events A =
p⋂

s=1
{vn < Xis ≤ un} and B =

q⋂
s=1

{vn < Xjs ≤ un} , jointly to the conditions D (un) for {Xn}n≥1 and D (−vn) for {−Xn}n≥1 (Lead-

better, 1988) we obtain the condition D (X, un, vn) of Davis.

The condition C(X, un, vn) holds if

lim sup
n−→∞

rn−1∑
j=1

(P (X1 > un, Xj+1 ≤ vn) + P (X1 ≤ vn, Xj+1 > un)) = 0,

where rn =
[

n
kn

]
, [s] denotes the greatest integer not greater than s and {kn}n≥1 is a sequence of

integer numbers such that kn −→∞.

Under C(X, un, vn) and D(X, un, vn) conditions, Davis (1982) proves the asymptotic indepen-
dence of the maximum and minimum.

Proposition 2.1.: Let X be a stationary sequence and θ1 and θ2 the extremal indexes of X
and −X, respectively. Let {an > 0}n≥1 , {bn}n≥1 , {cn > 0}n≥1 and {dn}n≥1 be sequences of constants
such that

(2.3) P
(
a−1

n

(
M

(1)
n − bn

)
≤ x

)
−−−→
n→∞

Gθ1(x)

and

(2.4) P
(
c−1
n

(
M (1)

n − dn

)
≤ y
)
−−−→
n→∞

1− (1−H(y))θ2



where G(x) and H(−y) are extreme value distributions. If, for each x, y ∈ R, and un = un(x) =
anx + bn, vn = vn(y) = cny + dn, the conditions D (X, un, vn) and C(X, un, vn) hold with {kn}n≥1

and {ln}n≥1 sequences of integer numbers verifying

(2.5) kn −−−→
n→∞

∞,
knln
n

−−−→
n→∞

0, knαn,ln −−−→n→∞
0,

where αn,ln is the mixing coefficient of the D (X, un, vn) condition, then

P (a−1
n

(
M

(1)
n − bn

)
≤ x, c−1

n

(
M (1)

n − dn

)
≤ y) −−−→

n→∞
Gθ1(x)

(
1− (1−H(y1))θ2

)
.

The joint limiting distribution of
(

M
(k)
n −bn

an
, M

(r)
n −dn

cn

)
, with an > 0, cn > 0, bn and dn real

constants, will be discussed in terms of the convergence in distribution of the sequence of bidimensional
point processes {(Sn [X, un] , Sn [−X,−vn])}n≥1 , where un = un(x) = anx+bn, vn = vn(y) = cny+dn

and the point process of exceedances of wn, n ≥ 1, by Y = {Yn}n≥1, is defined on [0, 1] , by

Sn [Y, wn] (·) =
n∑

i=1

I{Yi>wn}δ i
n
(·),

with δa the Dirac measure at a ∈ R.

Under the condition ∆∗ (X, un, vn) it is possible to characterize the distributional limits for
{(Sn [X, un] , Sn [−X,−vn])}n≥1 and to set a necessary and sufficient condition for its convergence in
distribution. We present that result, which is a corollary of the main result of Nandagopalan (1990) on
the bidimensional sequence of point processes of exceedances applied to the sequences {(Xn,−Xn)}n≥1

and {(un,−vn)}n≥1 .

Proposition 2.2.: Let X be a stationary sequence. Suppose that ∆∗ (X, un, vn) holds and
{(Sn [X, un] , Sn [−X,−vn])}n≥1 converges in distribution to some point process S. Then S is neces-
sarily a compound Poisson process with Laplace transform

LS(f1, f2) = exp

−ν

∫
[0,1]

∫
N2

0\{0}

1− exp

− 2∑
j=1

yjfj(x)

 dΠ (y1, y2) dx


for each non-negative measurable functions f1 and f2 on [0, 1] , where

(2.6) ν = −log lim
n→∞

P (Sn [Xn, un] ([0, 1]) = 0, Sn [−Xn,−vn] ([0, 1]) = 0)

and

(2.7) Π(y1, y2) = lim
n→∞

Πn(y1, y2), (y1, y2) ∈ N2
0 \ {0}

with

Πn(y1, y2) = P

(
rn∑
i=1

I{Xi>un} = y1,

rn∑
i=1

I{Xi≤vn} = y2 |
rn∑
i=1

I{Xi>un} +
rn∑
i=1

I{Xi≤vn} > 0

)

rn =
[

n
kn

]
and {kn}n≥1 is a sequence of integer numbers such that

(2.8)
knln
n

−−−→
n→∞

0, knα∗n,ln −−−→n→∞
0, kn −−−→

n→∞
∞.



Moreover, if (2.6) and (2.7) hold for some sequence {kn}n≥1 satisfying (2.8), then the sequence
{(Sn [X, un] , Sn [−X,−vn])}n≥1 converges in distribution to the above compound Poisson process.

By considering in Proposition 2.2. only a sequence {Xn}n≥1 of random variables and a sequence
of real numbers {un}n≥1, we obtain the result of Hsing et al. (1988).

As a consequence of Proposition 2.2. and its unidimensional version applied to the sequences
{Sn [X, un]}n≥1 and {Sn [−X,−vn]}n≥1 , we conclude that if X and −X have extremal indexes θ1 and
θ2, there exists sequences {an > 0}n≥1 , {bn}n≥1 , {cn > 0}n≥1 and {dn}n≥1 satisfying (2.3) and (2.4),
for each x, y ∈ R and un = un(x) = anx + bn, vn = vn(y) = cny + dn, ∆∗ (X, un, vn) holds and
{Sn [X, un]}n≥1 , {Sn [−X,−vn]}n≥1 and {(Sn [X, un] , Sn [−X,−vn])}n≥1 converge, then

Gk(x) = lim
n→∞

P
(
M

(k)

n ≤ un(x)
)

= Gθ1(x)

1 +
k−1∑
i=1

i∑
j=1

(
−logGθ1(x)

)j
j!

Π∗
j

1 (i)

 ,

Hr(y) = lim
n→∞

P
(
M (r)

n ≤ vn(y)
)

= 1− (1−H(y))θ2

1 +
r−1∑
i=1

i∑
j=1

(
−log(1−H(y))θ2

)j
j!

Π∗
j

2 (i)

 ,

Fk,r(x, y) = lim
n→∞

P
(
M

(k)

n ≤ un(x),M (r)
n ≤ vn(y)

)

= Gk(x)− (G1(x)− F1,1(x, y))

1 +
k−1∑
i1=0

r−1∑
i2=0

i1+i2>0

max(i1,i2)∑
j=1

(−log(G1(x)− F1,1(x, y)))j

j!
Π∗

j

(i1, i2)


where, for each x, y ∈ N,

Π1(x) = lim
n→∞

Πn,1 (x) = lim
n→∞

P

(
rn∑
i=1

I{Xi>un} = x |
rn∑
i=1

I{Xi>un} > 0

)
,

Π2(y) = lim
n→∞

Πn,2 (y) = lim
n→∞

P

(
rn∑
i=1

I{Xi≤vn} = y |
rn∑
i=1

I{Xi≤vn} > 0

)
,

and Π(x, y) is defined as previously.
By attending that the condition C(X, un, vn) allows to despise, for n large, the probability that

happening in to an interval of length rn “brusque ascent” and “brusque descent” the next result
establishes that if the limit distribution of Πn exists then it will be concentrated on{

(z1, z2) ∈ N2
0 \ {0} : z1 = 0 ∨ z2 = 0

}
.

Proposition 2.3.: Let {un}n≥1 and {vn}n≥1 be sequences of real numbers such that

(2.9) nP (X1 > un) −−−→
n→∞

τ1 > 0 and nP (X1 < vn) −−−→
n→∞

τ2 > 0.

If X and −X have extremal indexes θ1 and θ2, respectively, X is a stationary sequence and the
conditions D(X, un, vn) and C(X, un, vn) hold with {kn}n≥1 , {ln}n≥1 , {un}n≥1 and {vn}n≥1 verifying
(2.5), then for each (y1, y2) ∈ N2

0 \ {0} we have

(i) lim
n→∞

Πn (y1, y2) = 0 if y1y2 6= 0;

(ii) lim
n→∞

(
Πn (y, 0)− ν1

ν1+ν2
Πn,1 (y)

)
= lim

n→∞

(
Πn (0, y)− ν2

ν1+ν2
Πn,2 (y)

)
= 0, y ∈ N.

Proof: For sake of simplicity, we denote
rn∑
i=1

I{Xi>un} and
rn∑
i=1

I{Xi<vn}, respectively, by S
(1)
rn and

S
(2)
rn . By the Lemma of asymptotic independence of maxima over disjoint intervals and applying the



Proposition 2.1., it follows that

lim
n→∞

kn

(
1− P

(
S(1)

rn
= 0, S(2)

rn
= 0
))

= lim
n→∞

(
−logP kn

(
S(1)

rn
= 0, S(2)

rn
= 0
))

= − log lim
n→∞

P
(
M

(1)
n ≤ un,M (1)

n > un

)
= ν1 + ν2 = θ1τ1 + θ2τ2.

Then, for all (y1, y2) ∈ N2
0 \ {0} such that y1y2 6= 0, we have

(2.10) Πn (y1, y2) =
knP

(
S

(1)
rn = y1, S

(2)
rn = y2

)
knP

(
S

(1)
rn + S

(2)
rn > 0

) =
knP

(
S

(1)
rn = y1, S

(2)
rn = y2

)
ν1 + ν2

(1 + o(1)).

Since X is a stationary sequence, C(X, un, vn) holds and knP (X1 < vn) + knP (X1 > un) = o(1), we
obtain

knP
(
S(1)

rn
6= 0, S(2)

rn
6= 0
)

= knP
(
S(1)

rn
6= 0, S(2)

rn
6= 0, vn ≤ X1 ≤ un

)
+ o(1)

≤ knP

 ⋃
1≤i<j≤n

{Xi > un, Xj < vn}

+ o(1)

≤ knrn

rn∑
j=2

P (X1 > un, Xj < vn) + P (X1 < vn, Xj > un) = o(1),

which, with (2.10) allow us to conclude that Πn(y1, y2) = o(1) if y1y2 6= 0.

(ii) Taking y2 = 0 in (2.10), we have

Πn (y, 0) =
knP

(
S

(1)
rn = y, S

(2)
rn = 0

)
ν1 + ν2

(1 + o(1))

=
knP

(
S

(1)
rn = y, S

(2)
rn = 0, vn ≤ X1 ≤ un

)
+ o(1)

ν1 + ν2
(1 + o(1))

=
knP

(
S

(1)
rn = y

)
+ o(1)

ν1 + ν2
(1 + o(1)),

since

knP
(
S(1)

rn
= y, S(2)

rn
6= 0, vn ≤ X1 ≤ un

)
= o(1).

So,

Πn (y, 0) =
knΠn,1(y)P

(
S

(1)
rn > 0

)
+ o(1)

ν1 + ν2
(1 + o(1))

= Πn,1(y)
ν1 + o(1)
ν1 + ν2

(1 + o(1)).

The second convergence in (ii) is proved by using analogous arguments.

We are now ready to prove the asymptotic independence of an upper and a lower order statistics.

Corollary 2.1.: Let X be a stationary sequence and suppose that C (X, un, vn) and ∆∗ (X, un, vn)
hold with {kn}n≥1 and {ln}n≥1 sequences of integers numbers verifying (2.8). If the sequences X and



−X have extremal indexes θ1 and θ2, respectively, satisfy (2.9) and, for each i = 1, 2, Πn,i converges
weakly to a distribution Πi, then {(Sn [X, un] , Sn [−X,−vn])}n≥1 converges in distribution to the point
process with Laplace transform

LS[ν1,Π1](f1)LS[ν2,Π2](f2),

for any f1, f2 non-negative measurable functions on [0, 1] .

Proof: Since the conditions of Proposition 2.2. are satisfied with

ν = ν1 + ν2 = θ1τ1 + θ2τ2

and

Π (y1, y2) =


0 if y1y2 6= 0

ν1
ν1+ν2

Π1(y1) if y1 6= 0 ∧ y2 = 0
ν2

ν1+ν2
Π2(y2) if y1 = 0 ∧ y2 6= 0

then the limit point process is a bidimensional compound Poisson process with intensity ν1 + ν2 and
distribution of multiplicities Π, with Laplace transform

LS[ν1+ν2,Π](f1, f2)

= exp

−(ν1 + ν2)
∫

[0,1]

∫
N2

0\{0}

1− exp

− 2∑
j=1

yjfj(x)

 dΠ (y1, y2) dx


= exp

(
−(ν1 + ν2)

∫
[0,1]

(∫
N

(1− exp (−y1f1(x)))
ν1

ν1 + ν2
dΠ1(y1)dx

+
∫

N
(1− exp (−y2f2(x)))

ν2

ν1 + ν2
dΠ2(y2)dx

))
= LS[ν1,Π1](f1)× LS[ν2,Π2](f1).

3. Asymptotic independence of the joint locations of the k largest extremes and the joint
locations of the r smallest extremes

In Ferreira et al. (2002) was introduced a slight generalization of ∆ (un)−condition which
enable us to deal with exceedances of multiple levels and their locations in disjoint intervals.

Definition 3.1.: Let X be a stationary sequence of random variables and
{

u
(i)
n

}
n≥1

, i = 1, 2,

sequences of real numbers. For each 1 ≤ r ≤ s, set Bs
r(u

(i)∗
n ) as the σ−algebra generated by the events{

Xt ≤ u
(i)∗
n

}
, r ≤ t ≤ s, where u

(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
, and, for 1 ≤ l ≤ n− 1

α
(2)
n,l = max

1≤k≤n−l

{
|P (A ∩B)− P (A)P (B)| : A ∈ Bk

1(u(1)
n ), B ∈ Bn

k+l(u
(2)
n )
}

.

The condition ∆2

(
X, u

(1)
n , u

(2)
n

)
is said to hold if there exists a sequence ln = o(n), as n −→∞, such

that α
(2)
n,ln

−−−→
n→∞

0.

Under ∆2

(
X, u

(1)
n , u

(2)
n

)
, for all u

(1)
n = un(x1) = anx1+bn, u

(2)
n = un(x2) = anx2+bn, x1, x2 ∈ R,

and by supposing that the sequence
{

Sn

[
X, u

(i)∗
n

]}
, with u

(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
, converges, Ferreira et

al. (2002) obtained the asymptotic behavior of the joint locations of the k largest order statistics:



∀ε ∈ [0, 1] ,

lim
n→∞

P

(
k⋂

i=1

{
L

(i)
n ≤ nε

})
= ε−

k−1∑
s=1

εs(1− ε)
k−1∑
t=s

Π∗s

1 (t),

where Π∗s

1 is the sth convolution of the probability distribution Π1 on N, defined in the previous
section.

Since the rth lower extreme among Xi, i ≤ n, M
(r)
n , is simply given as the rth upper extreme

among −Xi, i ≤ n, using analogous arguments as in Ferreira et al. (2002), we conclude that if
∆2

(
−X,−v

(1)
n ,−v

(2)
n

)
holds for all v

(1)
n = vn(x1) = cnx1 + dn, v

(2)
n = vn(x2) = cnx2 + dn, x1, x2 ∈ R,

and
{

Sn

[
−X,−v

(i)∗
n

]}
, with v

(i)∗
n ∈

{
v

(1)
n , v

(2)
n

}
, converges,then

lim
n→∞

P

(
r⋂

i=1

{
L(i)

n ≤ nε
})

= ε−
r−1∑
s=1

εs(1− ε)
r−1∑
j=s

Π∗s

2 (j).

In the following, we will define generalizations of the conditions defined in the previous section
in order to obtain for every subsets I, J, I ′, J ′ of [0, 1] such that I ∪ J = I ′ ∪ J ′ = [0, 1] and I ∩ J =
I ′ ∩ J ′ = ∅, the asymptotic independence of the events{

M
(1)
n (I) ≤ un(x1),M

(k)
n (J) ≤ un(x2)

}
and

{
M (1)

n (I ′) > vn(y1),M (r)
n (J ′) > vn(y2)

}
,

where the levels un(xi), vn(yi), i = 1, 2, satisfy n1n2P (X1 > un(xi)) −−−→
n→∞

τi, n1n2P (X1 ≤ vn(yi)) −−−→
n→∞

τ ′i . This in turn will lead to the asymptotic independence of the joint locations of the k upper order
statistics and the joint locations of the r lower order statistics.

Definition 3.2.: Let X be a stationary sequence of random variables and
{

u
(i)
n

}
n≥1

,
{

v
(i)
n

}
n≥1

,

i = 1, 2, sequences of real numbers. The condition ∆∗
2(X,(u(1)

n , u
(2)
n ), (v(1)

n , v
(2)
n )) holds if in (2.1) we

consider the σ−algebra generated by the events
{

v
(i)∗
n < Xs ≤ u

(i)∗
n

}
, where u

(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
and

v
(i)∗
n ∈

{
v

(1)
n , v

(2)
n

}
.

We shall define the mixing coefficient in condition ∆∗
2(X,(u(1)

n , u
(2)
n ), (v(1)

n , v
(2)
n )) by α∗

(2)

n,ln
.

Definition 3.3.: Let X be a stationary sequence. The condition C(X, (u(1)
n , u

(2)
n ), (v(1)

n , v
(2)
n ))

holds if

limsup
n−→∞

kn

rn∑
i=1

rn∑
j=1

P (Xi > u(i)∗
n , Xj ≤ v(i)∗

n ) = 0,

where u
(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
, v

(i)∗
n ∈

{
v

(1)
n , v

(2)
n

}
and {kn}n≥1 is a sequence of integer numbers such that

kn −→∞.

If u
(1)
n = u

(2)
n = un and v

(1)
n = v

(2)
n = vn we obtain conditions ∆∗(X, un, vn) and C(X, un, vn).

Lemma 3.1.: Let X be a stationary sequence and suppose that, for each x1, x2, y1, y2 ∈ R, and
u

(i)
n = un(xi) = anxi+bn, v

(i)
n = vn(yi) = cnyi+dn, i = 1, 2, the condition ∆∗

2(X, (u(1)
n , u

(2)
n ), (v(1)

n , v
(2)
n ))

holds and the sequence
{(

Sn

[
X, u

(i)∗
n

]
, Sn

[
−X,−v

(i)∗
n

])}
n≥1

, where u
(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
, v

(i)∗
n ∈{

v
(1)
n , v

(2)
n

}
, converges. Then, for disjoint subsets I and J of [0, 1] , we have the asymptotic indepen-

dence of (
Sn

[
X, u(i)∗

n

]
(I), Sn

[
−X,−v(i)∗

n

]
(I)
)

and
(
Sn

[
X, u(i)∗

n

]
(J), Sn

[
−X,−v(i)∗

n

]
(J)
)

.



Lemma 3.2.: Let X and −X be sequences with extremal indexes θ1 and θ2, respectively. If
C(X,(u(1)

n , u
(2)
n ), (v(1)

n , v
(2)
n )) and ∆∗

2(X, (u(1)
n , u

(2)
n ), (v(1)

n , v
(2)
n )) hold, where the levels u

(i)
n , v

(i)
n , i = 1, 2,

satisfy

nP (X1 > u(i)
n ) −−−→

n→∞
τi > 0 and nP (X1 ≤ v(i)

n ) −−−→
n→∞

τ ′i > 0,

the sequence {kn}n≥1 verifies

knln
n

−−−→
n→∞

0, knα∗
(2)

n,ln −−−→n→∞
0, kn −−−→

n→∞
∞,

and, for each u
(i)∗
n ∈

{
u

(1)
n , u

(2)
n

}
, v

(i)∗
n ∈

{
v

(1)
n , v

(2)
n

}
, the sequence

{(
Sn

[
X,u

(i)∗
n

]
, Sn

[
−X,−v

(i)∗
n

])}
n≥1

converges, then, by considering Aεi = {1, . . . , [nεi]} , i = 1, 2, we have, for each ε1, ε2 ∈ (0, 1] ,

P
(
M

(1)
n (Rn \Aε1) ≤ u(1)

n ,M
(k)
n (Aε1) ≤ u(2)

n ,M (1)
n (Rn \Aε2) > v(1)

n ,M (r)
n (Aε2) > v(2)

n

)
−P

(
M

(1)
n (Rn \Aε1) ≤ u(1)

n ,M
(k)
n (Aε1) ≤ u(2)

n

)
×

P
(
M (1)

n (Rn \Aε2) > v(1)
n ,M (r)

n (Aε2) > v(2)
n

)
−−−→
n→∞

0.

Proof: By supposing, for example, that ε1 < ε2, let I1 = (0, ε1] , I2 = (ε1, ε2] and I3 = (ε2, 1] .
Then, by applying Lemma 3.1, we obtain

lim
n→∞

P
(
M

(1)

n (Rn \Aε1) ≤ u(1)
n ,M

(k)

n (Aε1) ≤ u(2)
n ,M (1)

n (Rn \Aε2) > v(1)
n ,M (r)

n (Aε2) > v(2)
n

)
= lim

n→∞
P
(
Sn

[
X, u(2)

n

]
(I1) ≤ k − 1, Sn

[
−X,−v(2)

n

]
(I1) ≤ r − 1

)
×

P
(
Sn

[
X, u(1)

n

]
(I2) = 0, Sn

[
−X,−v(2)

n

]
(I2) ≤ r − 1

)
×

P
(
Sn

[
X, u(1)

n

]
(I3) = 0, Sn

[
−X,−v(1)

n

]
(I3) = 0

)
,

and since C(X, (u(1)
n , u

(2)
n ), (v(1)

n , v
(2)
n )) and ∆∗

2(X, (u(1)
n , u

(2)
n ), (v(1)

n , v
(2)
n )) imply C(X, u

(i)
n , v

(j)
n ) and

∆∗(X, u
(i)
n , v

(j)
n ), for each i, j ∈ {1, 2} , it follows, from Corollary 2.1. that

lim
n→∞

P
(
M

(1)

n (Rn \Aε1) ≤ u(1)
n ,M

(k)

n (Aε1) ≤ u(2)
n ,M (1)

n (Rn \Aε2) > v(1)
n ,M (r)

n (Aε2) > v(2)
n

)
= lim

n→∞
P
(
Sn

[
X, u(2)

n

]
(I1) ≤ k − 1

)
× P

(
Sn

[
−X,−v(2)

n

]
(I1) ≤ r − 1

)
×

P
(
Sn

[
X, u(1)

n

]
(I2) = 0

)
× P

(
Sn

[
−X,−v(2)

n

]
(I2) ≤ r − 1

)
×

P
(
Sn

[
X, u(1)

n

]
(I3) = 0

)
× P

(
Sn

[
−X,−v(1)

n

]
(I3) = 0

)
Therefore, by using stationarity and attending that the sequences X and −X have extremal

indexes θ1 and θ2, respectively, and ∆(X, u
(i)
n ),∆(−X,−v

(i)
n ), i = 1, 2, hold, we obtain

lim
n→∞

P
(
M

(1)

n (Rn \Aε1) ≤ u(1)
n ,M

(k)

n (Aε1) ≤ u(2)
n ,M (1)

n (Rn \Aε2) > v(1)
n ,M (r)

n (Aε2) > v(2)
n

)
= e−θ2τ ′

1(1−ε2) × e−θ1τ1(1−ε1) × e−θ1τ2ε1 ×

1 +
k−1∑
i=1

i∑
j=1

(θ1τ2ε1)
j

j!
Π∗

j

1 (i)

×
1− e−θ2τ ′

2ε2

1 +
r−1∑
i=1

i∑
j=1

(θ2τ
′
2ε2)

j

j!
Π∗

j

2 (i)

 .

Now, since ∆2(X, u
(1)
n , u

(2)
n ) and ∆2(−X,−v

(1)
n ,−v

(2)
n ) hold, we have

P
(
M

(1)

n (Rn \Aε1) ≤ u(1)
n ,M

(k)

n (Aε1) ≤ u(2)
n )P (M (1)

n (Rn \Aε2) > v(1)
n ,M (r)

n (Aε2) > v(2)
n

)
= P (M

(1)

n (Rn \Aε1) ≤ u(1)
n )P (M

(k)

n (Aε1) ≤ u(2)
n )P (M (1)

n (Rn \Aε2) > v(1)
n )P (M (r)

n (Aε2) > v(2)
n )

+o(1)



which also converges to

e−θ2τ ′
1(1−ε2) × e−θ1τ1(1−ε1) × e−θ1τ2ε1 ×

1 +
k−1∑
i=1

i∑
j=1

(θ1τ2ε1)
j

j!
Π∗j

1 (i)

×
1− e−θ2τ ′

2ε2

1 +
r−1∑
i=1

i∑
j=1

(θ2τ
′
2ε2)

j

j!
Π∗j

2 (i)

 .

Proposition 3.1.: Under the assumptions of Lemma 3.2. we have

P

(
k⋂

i=1

{
L

(i)

n ≤ nε1

}
,

r⋂
i=1

{
L(i)

n ≤ nε2

})
−P

(
k⋂

i=1

{
L

(i)

n ≤ nε1

})
P

(
r⋂

i=1

{
L(i)

n ≤ nε2

})
−−−−→
n→∞

0.

Proof: It follows from the relationship

P

(
k⋂

i=1

{
L

(i)
n ≤ nε1

}
,

r⋂
i=1

{
L(i)

n ≤ nε2

})
= P

(
M

(1)
n (Rn \Aε1) ≤ M

(k)
n (Aε1) ,M (1)

n (Rn \Aε2) ≥ M (r)
n (Aε2)

)
,

and Lemma 3.2.

We finish this section by exhibiting a stationary sequence that verifies the assumptions of Propo-
sition 3.1.

Example: Let {Yn}n≥1 be a sequence of independent and identically distributed random vari-
ables with common distribution function, F, and define

Xn = max (Yn, Yn+1) , n ≥ 1.

Let
{

u
(i)
n

}
n≥1

and
{

v
(i)
n

}
n≥1

, i = 1, 2, be sequences of real numbers such that

n
(
1− F 2(u(i)

n )
)
−−−→
n→∞

τi and nF 2(−v(i)
n ) −−−→

n→∞
τ ′i .

Then X and −X have extremal indexes θ1 = 1
2 and θ2 = 1, respectively. Moreover Π1(2) =

lim
n→∞

Πn,1(2) = 1 and Π2(1) = lim
n→∞

Πn,2(1) = 1.

Since X is 2-dependent, for each u∗n ∈
{

u
(1)
n , u

(2)
n

}
and v∗n ∈

{
v

(1)
n , v

(2)
n

}
, we obtain

n

rn∑
j=2

P (X1 > u∗n, Xj ≤ −v∗n) + P (X1 ≤ −v∗n, Xj > u∗n)

= n (P (X1 > u∗n, X2 ≤ −v∗n) + P (X1 ≤ −v∗n, X2 > u∗n)) +

n

rn∑
j=3

P (X1 > u∗n, Xj ≤ −v∗n) + P (X1 ≤ −v∗n, Xj > u∗n)

≤ n (P (Y1 > u∗n, Y2 ≤ −v∗n, Y3 ≤ −v∗n) + P (Y1 ≤ −v∗n, Y2 ≤ −v∗n, Y3 ≥ u∗n)

+2nrn

(
1− F 2 (u∗n)

)
F 2 (−v∗n)

≤ 2n (1− F (u∗n))F 2 (−v∗n) + 2nrn

(
1− F 2 (u∗n)

)
F 2 (−v∗n) −−−→

n→∞
0.
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