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Abstract

In extreme value statistics the peaks-over-threshold method is widely
used. The method is based on the Generalized Pareto distribution ([1],
[8] in univariate theory and e.g. [3], [14] in multivariate theory) charac-
terizing probabilities of exceedances over high thresholds. We present a
generalization of this concept in the space of continuous functions. We
call this the Generalized Pareto process. Different from earlier papers
our definition is not based on a distribution function but on functional
properties.

As an application we use the theory to produce wind fields connected
to disastrous storms on the basis of observed extreme but not disastrous
storms.

Keywords: domain of attraction, extreme value theory, generalized Pareto
process, max-stable processes, regular variation

1 Introduction

We say that a stochastic process X in C(S) (the space of continuous functions
whith S a compact subset of Rd) is in the domain of attraction of a max-stable
process if there are continuous functions as(n) positive and bs(n) on S such that
the processes

{

max
i≤n

Xi(s)− bs(n)

as(n)

}

s∈S

,

with X,X1, . . . , Xn independent and identically distributed, converge in distri-
bution to a max-stable process Y in C(S). Necessary and sufficient conditions
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for this to happen are: uniform convergence of the marginal distributions and
a convergence of measures (in fact a form of regular variation):

lim
t→∞

tP (ηt ∈ A) = ν(A) (1.1)

where ηt(s) :=
(

1 + γ(s)X(s)−bs(t)
as(t)

)1/γ(s)

for all s ∈ S, ν is a homogeneous (of

order -1) measure on C+(S) := {f ∈ C(S) : f ≥ 0} and A any Borel set of
C+(S) with the properties: ν (∂A) = 0 and inf{sups∈S f(s) : f ∈ A} > 0 (de
Haan and Lin (2001), cf. de Haan and Ferreira Section 9.5). The functions
as(n) and bs(n) are chosen in such a way that the marginal distributions are

in standard form: exp− (1 + γ(s)x)
−1/γ(s)

. Here γ is a continuous function. In
particular one may take bs(t) := inf{x : P (X(s) ≤ x) ≥ 1 − 1/t}. This is how
we choose bs(t) from now on.

From (1.1) it follows that

P

(

(

1 + γ(·)X(·)−b
·
(t)

a
·
(t)

)1/γ(·)

∈ A

)

P
(

sups∈S
X(s)−bs(t)

as(t)
> 0
)

converges as t → ∞ and so does

P

(

(

1 + γ(·)
X(·)− b·(t)

a·(t)

)1/γ(·)

∈ A
∣

∣ sup
s∈S

X(s)− bs(t)

as(t)
> 0

)

.

The limit constitutes a probability distribution on C+(S).
This reasoning is quite similar to how one gets the generalized Pareto dis-

tributions in R (Balkema and de Haan, 1974) and in R
d (Rootzén and Tajvidi,

2006; Falk, Hüsler and Reiss, 2010). It leads to what we call generalized Pareto
processes.

As in the finite dimensional context it is convenient to study first generalized
Pareto processes in a standardized form. This is done in Section 2. The general
process is discussed in Section 3 and the domains of attraction in Section 4.

In finite dimensional space the peaks-over-threshold method for estimating
distribution tails is well known (see e.g. Coles’ (2001) book, Chapters 4 and 8).
In the same vein, in Section 5, we show that by using the stability property of
generalized Pareto processes one can create extreme storm fields starting form
independent and identically observations of storm fields.

A note on notation. Operations like w1 + w2 or w1 ∧ w2 with w1, w2 ∈
C(S) mean respectively {w1(s) + w2(s)}s∈S and {w1(s) ∧ w2(s)}s∈S . Then
with abuse of notation, operations like w + x or w ∧ x with w ∈ C(S) and
x ∈ R mean respectively {w(s) + x}s∈S and {w(s) ∧ x}s∈S . Similarly for

products and powers. Then e.g. we shall simply write
(

1 + γX−b(t)
a(t)

)1/γ

for
{

(

1 + γ(s)X(s)−bs(t)
as(t)

)1/γ(s)
}

s∈S

, when X = {X(s)}s∈S , a(t) = {as(t)}s∈S ,

b(t) = {bs(t)}s∈S and γ = {γ(s)}s∈S .
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2 The simple Pareto process

Let C+(S) be the space of non-negative real continuous functions in S, with S
some compact subset of Rd. We denote the Borel subsets of a metric space by
B (·).

Theorem 2.1. Let W be a stochastic process in C+(S) and ω0 a positive con-
stant. The following three statements are equivalent:

1. (POT - peaks-over-threshold - stability)

(a) E (W (s)/ sups∈S W (s)) > 0 for all s ∈ S,

(b) P (sups∈S W (s)/ω0 > x) = x−1, for x > 1 (standard Pareto distri-
bution),

(c)

P

(

ω0 W

sups∈S W (s)
∈ B

∣

∣ sup
s∈S

W (s) > r

)

= P

(

ω0 W

sups∈S W (s)
∈ B

)

,

(2.1)
for all r > ω0 and B ∈ B

(

C̄+
ω0
(S)
)

with

C̄+
ω0
(S) := {f ∈ C+(S) : sup

s∈S
f(s) = ω0}. (2.2)

2. (Random functions)

(a) P (sups∈S W (s) ≥ ω0) = 1,

(b) E (W (s)/ sups∈S W (s)) > 0 for all s ∈ S,

(c)
P (W ∈ rA) = r−1P (W ∈ A), (2.3)

for all r > 1 and A ∈ B
(

C+
ω0
(S)
)

, where rA means the set {rf, f ∈
A}, and

C+
ω0
(S) := {f ∈ C+(S) : sup

s∈S
f(s) ≥ ω0}. (2.4)

3. (Constructive approach) W (s) = Y V (s), for all s ∈ S, for some Y and
V = {V (s)}s∈S verifying:

(a) V ∈ C+(S) is a stochastic process verifying sups∈S V (s) = ω0 a.s.,
and EV (s) > 0 for all s ∈ S,

(b) Y is a standard Pareto random variable, FY (y) = 1− 1/y, y > 1,

(c) Y and V are independent.

Definition 2.1. The process W characterized in Theorem 2.1, with threshold
parameter ω0, is called simple Pareto process. The probability measure in (2.1)
i.e.,

Q(B) = P

(

ω0 W

sups∈S W (s)
∈ B

)

, for B ∈ B
(

C̄+
ω0
(S)
)

, (2.5)

is called the spectral measure.
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Proof of Theorem 2.1. We start by proving that 1. implies 3. By compactness
and continuity, sups∈S W (s) < ∞ a.s. Take:

Y =
sups∈S W (s)

ω0
and V =

ω0 W

sups∈S W (s)
.

Then (a), (b) and (c) are straightforward.
Next we prove that 3. implies 2. Let

Ar,B =

{

f ∈ C+(S) : sup
s∈S

f(s)/ω0 > r,
ω0 f

sups∈S f(s)
∈ B

}

= r ×A1,B ,

for all r > 1 and B ∈ B
(

C̄+
ω0
(S)
)

. Then,

P (W ∈ Ar,B) = P

(

sup
s∈S

W (s)/ω0 > r,
ω0 W

sups∈S W (s)
∈ B

)

= P (Y > r, V ∈ B) = P (Y > r)P (V ∈ B)

=
1

r
P

(

sup
s∈S

W (s)/ω0 > 1,
ω0 W

sups∈S W (s)
∈ B

)

=
1

r
P (W ∈ A1,B)

using in particular the independence of Y and V and P (sups∈S W (s)/ω0 > 1) =
1. Since P (tA) = t−1P (A) holds for any of the above sets, it holds for all Borel
sets in the statement.

Finally, check that 2. implies 1. For any r ≥ 1,

P

(

sups∈S W (s)

ω0
> r

)

= P

(

sups∈S W (s)

ω0
> r,

ω0 W

sups∈S W (s)
∈ C̄+

ω0
(S)

)

=
1

r
P
(

C̄+
ω0
(S)
)

=
1

r

and also for any B ∈ B
(

C̄+
ω0
(S)
)

,

P

(

sup
s∈S

W (s)/ω0 > r,
ω0 W

sups∈S W (s)
∈ B

)

=
1

r
P

(

sup
s∈S

W (s)/ω0 > 1,
ω0 W

sups∈S W (s)
∈ B

)

=
1

r
P

(

ω0 W

sups∈S W (s)
∈ B

)

since sups∈S W (s) > ω0 holds a.s. That is, it follows that sups∈S W (s)/ω0 is
univariate Pareto distributed and, sups∈S W (s) and W/ sups∈S W (s) are inde-
pendent.

The following properties are direct consequences:

Corollary 2.1. For any simple Pareto process W , the random variable ω−1
0 sups∈S W (s)

has standard Pareto distribution.
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Corollary 2.2. W ∈ C+(S) is a simple Pareto process if and only if any of the
two equivalent statements hold:

1. (a) E (W (s)/ sups∈S W (s)) > 0 for all s ∈ S,

(b) P (sups∈S W (s)/ω0 > x) = x−1, for x > 1,

(c)

P

(

W ∈ rA
∣

∣ sup
s∈S

W (s) > rω0

)

= P (W ∈ A) (2.6)

for all r > 1 and A ∈ B
(

C+
ω0
(S)
)

.

2. (a) E (W (s)/ sups∈S W (s)) > 0 for all s ∈ S,

(b)

P

(

sup
s∈S

W (s)

ω0
> r,

ω0 W

sups∈S W (s)
∈ B

)

=
Q(B)

r
, (2.7)

for all r > 1 and B ∈ B
(

C̄+
ω0
(S)
)

.

From (2.6) we see that the probability distribution of W serves in fact as
the exponent measure in max-stable processes (cf. de Haan and Ferreira (2006),
Section 9.3). Characterization 2. suggests ways for testing and modelling Pareto
processes.

Let w,W ∈ C+(S). Conditions W ≤ (>)w define the sets {f ∈ C+(S) :
f(s) ≤ (>)w(s) for all s ∈ S} and (W 6≤ w) defines the set {f ∈ C+(S) : f(s) >
w(s) for at least one s ∈ S}; in the later if additionally infs∈S w(s) > ω0 then
{sups∈S f ∈ C+(S) : f(s) > w(s) for at least one s ∈ S} > ω0. Note also that
W > w is not the complement of W ≤ w.

Proposition 2.1. (Distribution functions) Let w,W ∈ C+(S), with W simple
Pareto process. Then,

P (W ≤ w) = E

(

sup
s∈S

V (s)

w(s) ∧ ω0

)

− E

(

sup
s∈S

V (s)

w(s)

)

(2.8)

with the difference interpreted as zero if infs∈S w(s) = 0. In particular, P (W 6≤
ω0) = 1.

Corollary 2.3. For all w ∈ C+(S) such that sups∈R
w(s) > ω0,

P (W > w) = E

(

inf
s∈S

V (s)

w(s)

)

= ω0E

(

infs∈S W (s)/w(s)

sups∈S W (s)

)

. (2.9)

Corollary 2.4. For x ∈ R,

P (W (s) > x for all s ∈ S|W > ω0) =
ω0

x
, x > ω0, (2.10)

P (W (s) > x|W (s) > ω0) =
ω0

x
, x > ω0, for all s ∈ S. (2.11)
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Relation (2.8) is an analog of Definition 2.1 in Rootzén and Tajvidi (2006),
and also (2.11) is in agreement with their results on lower-dimensional distribu-
tions.

Proof of Proposition 2.1. P (sups∈S W (s) ≥ ω0) = 1 implies that, for all 0 ≤
ε < ω0 there exists s ∈ S such that W (s) > ε with probability one, which
implies, for w ∈ C+(S) such that infs∈S w(s) = 0,

P (W 6≤ w) = P
(

{f ∈ C+(S) : f(s) > w(s) for at least one s}
)

= 1.

Hence from now on take w such that infs∈S w(s) > 0. If even infs∈S w(s) ≥
ω0,

P (W ≤ w) = P (Y V ≤ w) = P

(

Y ≤ inf
s∈S

w(s)

V (s)

)

= 1− E

(

sup
s∈S

V (s)

w(s)

)

(2.12)

hence,

P (W 6≤ w) = E

(

sup
s∈S

V (s)

w(s)

)

= ω0E

(

sups∈S W (s)/w(s)

sups∈S W (s)

)

. (2.13)

On the other hand, the homogeneity property (2.3) allows us to extend the
probability measure of W that lives on the space C+

ω0
(S) to all of C+(S). We

call the resulting measure ν. It plays the same role as the exponent measure ν
in the theory of max-stable processes (cf. de Haan and Ferreira (2006), Section
9.3). Then, for B ⊂ C+(S),

P (W ∈ B) = ν{f ∈ C+(S) : f ∈ B, sup
s∈S

f(s) > ω0}. (2.14)

In order to determine P (W ≤ w) for any w ∈ C+(S) we use (2.13), (2.14)
and Theorem 2.1:

ν
{

f ∈ C+(S) : f 6≤ w
}

=
ω0

infs∈S w(s)
ν

{

f ∈ C+(S) : f 6≤
wω0

infs∈S w(s)

}

=
ω0

infs∈S w(s)
P

(

W 6≤
wω0

infs∈S w(s)

)

= E

(

sup
s∈S

V (s)

w(s)

)

,

hence,

P (W 6≤ w) = ν
{

f ∈ C+(S) : f 6≤ w, f 6≤ ω0

}

= ν
{

f ∈ C+(S) : f 6≤ w
}

+ ν
{

f ∈ C+(S) : f 6≤ ω0

}

− ν
{

f ∈ C+(S) : f 6≤ w ∧ ω0

}

= E

(

sup
s∈S

V (s)

w(s)

)

+ 1− E

(

sup
s∈S

V (s)

w(s) ∧ ω0

)

.

Proof of Corollary 2.3. Similar to (2.12).
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Proof of Corollary 2.4. Relation (2.10) is direct from Corollary 2.3.
For (2.11): for x ∈ R,

P (W (s) > x) = P (Y V (s) > x) = P

(

Y >
x

V (s)

)

= E

(

V (s)

x
∧ 1

)

=

∫

{v(s)/x≤1}

v(s)

x
dFV (s) + P (V (s) > x)

which simplifies to x−1EV (s) for x > ω0. The rest follows.

Finally, we give two simple examples.

Example 2.1. 1. One of the simplest process is when W ≡ Y , that is a
Pareto random variable governing through the whole space. Then Q con-
centrates on the constant function w ≡ 1. Some examples of probabilities
in space are then, for all w with infs∈R w(s) > 1,

P (W ≤ w) = P

(

Y ≤ inf
s∈R

w(s)

)

= 1−
1

infs∈R w(s)

and, for w with sups∈R
w(s) > 1,

P (W > w) = P

(

Y > sup
s∈R

w(s)

)

=
1

sups∈R
w(s)

.

Of course all the univariate marginals are standard Pareto.

2. Another simple situation is with {W (s)}s∈R
= {Y v(s)}s∈R with {v(s)}s∈R

some positive deterministic continuous function with finite supremum (for
instance suppose some behaviour described by the curve v subjected to
some independent random impact Y ). Then we have, for w such that
infs∈R w(s)/v(s) > 1,

P (W ≤ w) = P

(

Y ≤ inf
s∈R

w(s)

v(s)

)

= 1− sup
s∈R

w(s)

x(s)

and, for w such that sups∈R
w(s)/v(s) > 1,

P (W > w) = P

(

Y > sup
s∈R

w(s)

v(s)

)

= inf
s∈R

v(s)

w(s)
.

The univariate marginal distributions are Pareto (v(s)), i.e. FW (s)(y) =
1 − v(s)/y, y > v(s), s ∈ R. For example, contour levels w(s) = c v(s)
for some constant c > ω0, have exceedance probabilities P (W > w) also
governed by a univariate Pareto distribution.

To end this section, we link the finite dimensional distributions of the simple
Pareto process with the finite dimensional distributions of simple max-stable
processes. For completeness we define max-stable processes and review a repre-
sentation for these processes.
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Definition 2.2. A process η = {η(s)}s∈R ∈ C(R) with non-degenerate mar-
ginals is called max-stable if, for η1, η2, . . . , i.i.d. copies of η, there are real
continuous functions cn = {cs(n)}s∈R > 0 and dn = {ds(n)}s∈R such that,

max
1≤i≤n

ηi − dn
cn

d
= η for all n = 1, 2, . . . .

It is called simple if its marginal distributions are standard Fréchet, and then it
will be denoted by η̄.

Proposition 2.2 (Penrose(1992)). All simple max-stable processes in C+(R̄)
can be generated in the following way. Consider a Poisson point process on
(0,∞] with mean measure r−2 dr. Let {Zi}

∞
i=1 be a realization of this point

process. Further consider i.i.d. stochastic processes V1, V2, . . . in C+(R̄) with
EV1(s) = 1 for all s ∈ R̄ and E sups∈R̄

V (s) < ∞. Then

η̄ =d max
i=1,2,...

Zi Vi.

Conversely each process with this representation is simple max-stable (and one
can take V such that sups∈R̄

V (s) = c a.s. with c > 0).

The spectral measure of the max-stable process is defined as the probability
measure associated to V . The process V for max-stable processes plays the
same role as the process V for Pareto processes in Theorem 2.1. The connection
between finite dimensional distribution functions is discussed next.

The finite dimensional distributions of η where computed in de Haan (1984).
From the given representation we have, for s1, . . . , sn ∈ R, x1, . . . , xn ∈ R, for
all n ∈ N,

G(x1, . . . , xn) = P (η̄(s1) ≤ x1, . . . , η̄(sn) ≤ xn) = exp

(

−E max
1≤i≤n

V (si)

xi

)

.

(2.15)
Now note that (2.12) particularized to finite-dimensions give, for s1, . . . , sn ∈

R, x1, . . . , xn ∈ R, with xi > ω0, i = 1, . . . , n,

P (W (s1) ≤ x1, . . . ,W (sn) ≤ xn) = P (Y V (s1) ≤ x1, . . . , Y V (sn) ≤ xn)

= P

(

Y ≤ min
1≤i≤n

xi

V (si)

)

= 1− E max
1≤i≤n

V (si)

xi
. (2.16)

More generally forK1,K2, . . . ,Kd compact subsets of R and x1, x2, . . . , xd > ω0,

P (W (s) ≤ xi, for all s ∈ Ki, i = 1, 2, . . . , d) = 1− E max
1≤i≤d

(

x−1
i sup

s∈Ki

V (s)

)

.

Comparing simple Pareto and simple max-stable processes, if the two pro-
cesses have the same spectral measure, (2.16) equals ‘1 + logG’, i.e. the typical
distribution-relation between extreme value and Pareto distributions holds in
the given region. The definition of a multivariate Pareto distribution in Michel

8



(2008) (cf. also Falk et al. (2010)) is: any multivariate distribution function
that can be represented by 1 + logG, with G any multivariate extreme value
distribution, in a neighborhood of the right endpoint of G. Hence we cover this
situation.

From the finite dimensional distributions one may check that independence
in the Pareto process among any points is impossible. For any two points
s1, s2 ∈ R, P (W (s1) > c,W (s2) > c) = c−1E (V (s1) ∧ V (s2)), P (W (si) > c) =
EV (si)/c > 0, i = 1, 2, and E (V (s1) ∧ V (s2)) = EV (s1)EV (s2)/c > 0, for all
c > ω0 is impossible.

All the above results extend in a natural way to R̄ := [−∞,+∞].

3 The generalized Pareto process

Let C(S) be the space of real continuous functions on S with S ⊂ R
d compact.

The more general processes with continuous extreme value index function γ =
{γ(s)}s∈S , location and scale functions µ = {µ(s)}s∈S and σ = {σ(s)}s∈S is
defined as:

Definition 3.1. Let W be a simple Pareto process, µ, σ, γ ∈ C(S) with σ > 0.
The generalized Pareto process Wµ,σ,γ ∈ C(S) is given by,

Wµ,σ,γ = µ+ σ
W γ − 1

γ
(3.1)

with all operations taken componentwise (recall the convention explained in the
end of Section 1).

The correspondent to Corollary 2.1 is,

Corollary 3.1. The random variable sups∈S

{

(

1 + γ(s)
Wµ,σ,γ(s)−µ(s)

σ(s)

)1/γ(s)
}

ω−1
0

has standard Pareto distribution.

Related with stability or homogeneity properties we have:

Proposition 3.1. For any Pareto process Wµ,σ,γ ,

P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ rA

)

= r−1P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ A

)

,

(3.2)
for all r > 1 and A ∈ B

(

C+
ω0
(S)
)

. Moreover, there exist normalizing functions
u(r) and s(r) such that

P

(

(

1 + γ
Wµ,σ,γ − u(r)

s(r)

)1/γ

∈ A
∣

∣ sup
s∈S

(

1 + γ
Wµ,σ,γ − u(r)

s(r)

)1/γ

> ω0

)

= P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ A

)

, (3.3)
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for all r > 1 and A ∈ B
(

C+
ω0
(S)
)

.

Conversely, (3.3) and sups∈S

{

(

1 + γ(s)
Wµ,σ,γ(s)−µ(s)

σ(s)

)1/γ(s)
}

ω−1
0 being stan-

dard Pareto distributed, imply (3.2).

Proof. Relation (3.2) is direct from Definition 3.1 and (2.3). Then, with u(r) =
µ+ σ(rγ − 1)/γ and s(r) = σrγ and, for all r > 1 and A ∈ B

(

C+
ω0
(S)
)

,

P

(

(

1 + γ
Wµ,σ,γ − u(r)

s(r)

)1/γ

∈ A
∣

∣

(

1 + γ
Wµ,σ,γ − u(r)

s(r)

)1/γ

6≤ ω0

)

= P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ rA
∣

∣

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

6≤ rω0

)

=

P

(

(

1 + γ
Wµ,σ,γ−µ

σ

)1/γ

∈ rA

)

P

(

(

1 + γ
Wµ,σ,γ−µ

σ

)1/γ

6≤ rω0

) = P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ A

)

by (3.2) and Corollary 3.1.
Conversely, for all r > 1 and A ∈ B

(

C+
ω0
(S)
)

,

P

(

(

1 + γ
Wµ,σ,γ−u(r)

s(r)

)1/γ

∈ A

)

P

(

sups∈R

(

1 + γ
Wµ,σ,γ−u(r)

s(r)

)1/γ

ω−1
0 > 1

)

=

P

(

(

1 + γ
Wµ,σ,γ−µ

σ

)1/γ

∈ rA

)

r−1
= P

(

(

1 + γ
Wµ,σ,γ − µ

σ

)1/γ

∈ A

)

by (3.3) and sups∈S

{

(

1 + γ(s)
Wµ,σ,γ(s)−µ(s)

σ(s)

)1/γ(s)
}

ω−1
0 being standard Pareto

distributed.

Example 3.1. Relation (3.3) may be viewed as the correspondent to the stability
property in Rootzén and Tajvidi (2006), cf. their relation (6). E.g. in the
‘simple’ case one checks that

P





(

W (si)
ω0

− 1
)

− (t− 1)

t
≤

xi

ω0
, i = 1, . . . n

∣

∣

(

W (si)
ω0

− 1
)

− (t− 1)

t
6≤ 0, i = 1, . . . n





= P

(

W (si)

ω0
− 1 ≤

xi

ω0
, i = 1, . . . n

)

,

for all xi, i = 1, . . . , n.
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The corresponding to Proposition 2.1 on distribution functions is now:

P (Wµ,σ,γ ≤ w) = E







sup
s∈R

V (s)

(

(

1 + γ(s)
w(s)− µ(s)

σ(s)

)1/γ(s)

∧ ω0

)−1






− E

{

sup
s∈R

V (s)

(

1 + γ(s)
w(s)− µ(s)

σ(s)

)−1/γ(s)
}

,

for 1 + γ(w − µ)/σ ∈ C+(S) and the difference taken as zero if
infs∈S {1 + γ(s)(w(s)− µ(s))/σ(s)} = 0.

4 Domain of attraction

The maximum domain of attraction of extreme value distributions in infinite-
dimensional space has been characterized in de Haan and Lin (2001). This result
leads directly to a characterization of the domain of attraction of a generalized
Pareto process.

Let C(S) be the space of real continuous functions in S, with S ⊂ R
d some

compact subset, equipped with the supremum norm. The convergences below
→d denote weak or convergence in distribution. Denote by η̄ = {η̄(s)}s∈S any
simple max-stable process in C+(S) (cf. Definition 2.2). Any max-stable process
η = {η(s)}s∈S in C(S) can be represented by η = (η̄γ − 1)/γ, for some η̄ and
continuous function γ = {γ(s)}s∈S . For simplicity we always take here

C+
1 (S) = {f ∈ C+(S) : sup

s∈S
f(s) ≥ 1},

i.e. consider the constant ω0 introduced in Section 2 equal to 1.
The maximum domain of attraction condition in C(S) can be stated as:

Condition 4.1. For X,X1, X2, . . . i.i.d. random elements of C(S), there exists
a max-stable stochastic process η ∈ C(S) with continuous index function γ, and
as(n) > 0 and bs(n) in C(S) such that

{

max
1≤i≤n

Xi(s)− bs(n)

as(n)

}

s∈S

→d {η(s)}s∈S (4.1)

on C(S). The normalizing functions are w.l.g. chosen in such a way that
− logP (η(s) ≤ x) = (1 + γ(s)x)−1/γ(s) for all x with 1 + γ(s)x > 0, s ∈ S.

Next is an equivalent characterization of the domain of attraction condition,
in terms of ‘exceedances’. Suppose the marginal distribution functions Fs(x) =
P (X(s) ≤ x) are continuous in x, for all S. To simplify notation write the
normalized process,

ηt =

(

1 + γ
X − b(t)

a(t)

)1/γ

+

,

for some normalizing functions in C(S), a(t) = {as(t)}s∈S > 0 and b(t) =
{bs(t)}s∈S .
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Condition 4.2. For X ∈ C(S) suppose, for some a(t) > 0 and b(t) in C(S),

lim
t→∞

tP

(

X(s)− bs(t)

as(t)
> x

)

= (1 + γ(s)x)−1/γ(s), 1 + γ(s)x > 0, (4.2)

uniformly in s,

lim
t→∞

P (sups∈S ηt(s) > x)

P (sups∈S ηt(s) > 1)
=

1

x
, for all x > 1, (4.3)

and

lim
t→∞

P

(

ηt
sups∈S ηt(s)

∈ B
∣

∣ sup
s∈S

ηt(s) > 1

)

= Q(B), (4.4)

for each B ∈ B
(

C̄+
1 (S)

)

with Q(∂B) = 0, with Q some probability measure on

C̄+
1 (S).

Note that this is the same as for max-stable processes; cf. Theorem 9.5.1 in
de Haan and Ferreira (2006). Note also that (4.3)–(4.4) specify a simple Pareto
process in the limit.

Theorem 4.1. Conditions 4.1 and 4.2 are equivalent and the corresponding
limiting processes share the same spectral measure.

Proof. Cf. Theorem 9.5.1 in de Haan and Ferreira (2006). The normalization
there is

{η̃t(s)}s∈S =

{

1

t(1− Fs(X(s)))

}

s∈S

,

but the results are the same.

The following are direct consequences:

Corollary 4.1. Any max-stable process verifies Condition 4.2.

Corollary 4.2. Relations (4.3)–(4.4) imply

lim
t→∞

P

(

ηt ∈ A
∣

∣ sup
s∈S

ηt(s) > 1

)

= P (W ∈ A),

with A ∈ B
(

C+
1 (S)

)

, P (∂A) = 0 and W some simple Pareto process.

The converse statement of Corollary 4.2 is as follows:

Theorem 4.2. Suppose that there exists a continuous function b̃(u) = {b̃s(u)}s∈S

that is increasing and with the property that P (X(s) > b̃s(u) for some s ∈ S) →
0 as u → ∞, and a positive continuous function ã(u) = {ãs(u)}s∈S > 0 such
that

lim
u→∞

P

(

X − b̃(u)

ã(u)
∈ A

∣

∣X(s)− b̃s(u) > 0 for some s ∈ S

)

= P̃ (A),

for all A ∈ B (C(S)) and P̃ (∂A) = 0. Then Conditions 4.1 and 4.2 are fulfilled.
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Proof. By the conditions on b̃(u), we can determine q = q(t) such that P (X(s) >
b̃s(q(t)) for some s ∈ S) = 1/t. Then with bs(t) = b̃s(q(t)) and as(t) = ãs(q(t)),

lim
t→∞

tP

(

X − b(t)

a(t)
∈ C and X(s) > bs(t) for some s ∈ S

)

= P̃ (C),

for all C ∈ B (C(S)) and P̃ (∂C) = 0. In particular, if inf{sups∈S f(s) : f ∈
C} > 0 we have

lim
t→∞

tP

(

X − b(t)

a(t)
∈ C

)

= P̃ (C). (4.5)

We proceed as usual in extreme value theory. Fix for the moment s ∈ S. It
follows that for x > 0

lim
t→∞

tP (Xs(t) > bs(t) + xas(t)) = P̃{f : f(s) > x}.

Let Us be the inverse function of 1/P (X(s) > x) and Vs be the inverse function
of 1/P̃ {f : f(s) > x}. Then

lim
t→∞

Us(tx)− bs(t)

as(t)
= Vs(x), for x > 0.

It follows that for some real γ(s) and all x > 0

lim
t→∞

bs(tx)− bs(t)

as(t)
=

xγ(s) − 1

γ(s)
and lim

t→∞

as(tx)

as(t)
= xγ(s). (4.6)

Since the limit process has continuous paths, the function γ must be continuous
on S.

Now replace t in (4.5) by ct where c > 0. Then

lim
t→∞

tP

(

bs(t)− bs(tc)

as(tc)
+

as(t)

as(tc)

X − b(t)

a(t)
∈ C

)

=
1

c
P̃ (C)

hence, by (4.6)

lim
t→∞

tP

(

(

1 + γ
X − b(t)

a(t)

)1/γ

∈ c (1 + γC)
1/γ

)

=
1

c
P̃ (C)

and by (4.5)

lim
t→∞

tP

(

(

1 + γ
X − b(t)

a(t)

)1/γ

∈ (1 + γC)
1/γ

)

= P̃ (C).

Write P (A) = P̃ ((Aγ − 1) /γ). Then

lim
t→∞

tP (ηt ∈ A) = P (A),

with P (cA) = c−1P (A), for all c > 0 andA ∈ B (C(S)) such that inf{sups∈S f(s) :
f ∈ A} > 1 and P (∂A) = 0. The rest is exactly like the proof of the equivalence
between (2b) and (2c) of Theorem 9.5.1 in de Haan and Ferreira (2006).
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By Corollary 3.1 and Proposition 3.1 it follows:

Corollary 4.3. Any Pareto process is in the domain of attraction of a max-
stable process with the same spectral measure.

Example 4.1. The finite dimensional distributions of the moving maximum
processes obtained in de Haan and Pereira (2006) can be applied to obtain the
finite dimensional distributions of the correspondent Pareto process, in the ap-
propriate region.

Example 4.2 (Regular variation (de Haan and Lin 2001, Hult and Lindskog
2005) ). A stochastic process X in C(S) is regularly varying if and only if there
exists an α > 0 and a probability measure Q such that,

P (sups∈S X(s) > tx, X/ sups∈S X(s) ∈ ·)

P (sups∈S X(s) > t)
→d x−α Q(·), x > 0, t → ∞,

(4.7)
on {f ∈ C(S) : sups∈S f(s) = 1}. Hence, a regularly varying process such that
(4.2) holds for the marginals, verifies Condition 4.2 with γ = 1/α, b(t) = t and
a(t) = t/α; note that the index function is constant in this case.

On the other hand, the normalized process tηt (or tη̃t) with ηt verifying
(4.3)–(4.4), verifies regular variation with α = 1 and spectral measure Q on
C+

1 (S).

Remark 4.1. Our analysis is also valid - mutatis mutandis - in the finite-
dimensional set-up. The definition in that case is the same as in Rootzén and
Tajvidi (2006). The difference is that their analysis is entirely based on distri-
bution functions whereas ours is more structural. Here are some remarks.

Let F̄ = 1−F with F some d−variate distribution function, x = (x1, x2, . . . , xd) ∈
R

d, and u(·) = (u1(·), u2(·), . . . , ud(·)) and σ the normalizing functions consid-
ered in Rootzén and Tajvidi (2006) (see e.g. their definition of Xu). By using

σ(xt)/σ(t) → (xγ1 , xγ2 , . . . , xγd) and (u(xt)− u(t)) /σ(t) →
(

xγ1−1
γ 1

, xγ2−1
γ 2

, . . . , xγd−1
γ d

)

,

t → ∞, for some reals γ1, γ2, . . . , γd (cf. proof of Theorem 2.1(ii)) and by

F̄ ∗(x) := F̄ (u1(x1), u2(x2), . . . , ud(xd)) ,

one simplifies their relation (19) to

tF̄ ∗(tx) → − logG

(

xγ1

1 − 1

γ1
,
xγ2

2 − 1

γ2
, . . . ,

xγd

d − 1

γd

)

,

and one simplifies their relation (6) to

P (X∗ ≤ tx|X∗ 6≤ t1) = P (X∗ ≤ x)

for t ≥ 1. Hence one can take u(t) :=
(

tγ1−1
γ1

, tγ2−1
γ2

, . . . , tγd−1
γd

)

in Theorem 2.2

of that paper.
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In Theorem 2.2 (ii) it is not sufficient to require (6) for x > 0. For example
the probability distribution in R

2 given by

P (X > x or Y > y) =

(

1

2
e−2(x∨0) +

1

2
e−2(y∨0)

)1/2

, x ∨ y ≥ 0,

satisfies (6) for x > 0 but not for all x and it is not a generalized Pareto
distribution.

5 Application

‘Deltares’ is an advisory organization of the Dutch government concerning (among
others) the safety of the coastal defenses against severe wind storms. One stud-
ies the impact of severe storms on the coast, storms that are so severe that
they have never been observed. In order to see how these storms look like it
is planned to produce wind fields on and around the North Sea using certain
climate models. These climate models produce independent and identically dis-
tributed (i.i.d.) wind fields similar to the ones that could be observed (but that
are only partially observed). Since the model runs during a limited time, some
of the wind fields will be connected with storms of a certain severity but we
do not expect to see really disastrous storms that could endanger the coastal
defenses. The question put forward by Deltares is: can we get an idea how the
really disastrous wind fields look like on the basis of the ‘observed’ wind fields?
We want to show that this can be done using the generalized Pareto process.

Consider i.i.d. continuous stochastic processes {Xi(s)}s∈S where S is a com-
pact subset of Rd. Suppose that the probability distribution of the process is in
the domain of attraction of some max-stable process i.e., there exist functions
as(n) > 0 and bs(n) (s ∈ S) such that the sequence of processes

{

max
1≤i≤n

Xi(s)− bs(n)

as(n)

}

s∈S

converges to a continuous process, say Y , in distribution in C(S). Then Y is a
max-stable process.

According to Theorem 4.1 the process X1 is then in the domain of attraction
of the corresponding generalized Pareto process i.e. from relations (4.3)–(4.4)

with RX(t) := sups∈S

(

1 + γ(s)X(s)−bs(t)
as(t)

)1/γ(s)

,

lim
t→∞

P

(

(

1 + γ
X − b(t)

a(t)

)1/γ

∈ RX(t)B and RX(t) > x
∣

∣RX(t) > 1

)

= x−1Q(B) (5.1)

for x > 1 and B ∈ B
(

C̄+
1 (S)

)

with Q(∂B) = 0.
This statement leads to a peaks-over-threshold method in this framework:
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Let X1, X2, . . . , Xn be i.i.d. and let the underlying distribution satisfy the
conditions above. Select from the normalized processes

{

(

1 + γ
X − b(t)

a(t)

)1/γ
}n

i=1

those that satisfy Xi(s) > bs(t) for some s ∈ S i.e. for which RXi
(t) > 1. Here t

is a large value and of course bs(t) can be taken as inf{y : P (X1(s) > y) ≤ 1/t}.

Let us denote the selected (normalized) processes as {X
(1)
j }rj=1 They are still

i.i.d. and follow approximately the distribution given by (5.1):

P
(

X
(1)
j ∈ R

X
(1)
j

(t)B and R
X

(1)
j

(t) > x
)

= x−1Q(B).

This means that the processes {X
(1)
j }rj=1 are approximately generalized Pareto

processes.
Next, in order to use Proposition 3.1, we multiply these processes by a (large)

factor t0. Define for j = 1, 2, . . . , r,

X
(2)
j (s) := t0X

(1)
j (s) for s ∈ S.

This brings the processes to a higher level without changing the distribution
essentially (by the homogeneity property). Finally we undo the normalization
and define for j = 1, 2, . . . , r

X
(3)
j (s) := as(t)

(

X
(2)
j (s)

)γ(s)

− 1

γ(s)
+ bs(t)

for s ∈ S.
We claim that the processes {X

(3)
j }rj=1 are peaks-over-threshold processes

with respect to a much higher threshold (namely bs(tt0)) than the processes

{X
(1)
j }rj=1 (with threshold bs(t)). In order to prove this we need the following

properties (cf. relation (9.5.2) page 312 of the Haan and Ferreira (2006)),

lim
t→∞

bs(tx)− bs(t)

as(t)
=

xγ(s) − 1

γ(s)
(5.2)

and

lim
t→∞

as(tx)

as(t)
= xγ(s) (5.3)

uniformly for s ∈ S and locally uniformly in x. The derivation is straightfor-
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ward:

P

(

X(3) − b(tt0)

a(tt0)
∈ A

)

= P















a(t)

a(tt0)

[

t0

(

1 + γX(1)−b(t)
a(t)

)1/γ
]γ

− 1

γ
+

b(t)− b(tt0)

a(tt0)
∈ A















≈ P







t−γ
0

[

tγ0

(

1 + γX(1)−b(t)
a(t)

)]

− 1

γ
+

t−γ
0 − 1

γ
∈ A







= P







(

1 + γX(1)−b(t)
a(t)

)

− t−γ
0

γ
+

t−γ
0 − 1

γ
∈ A







= P

(

X(1) − b(t)

a(t)
∈ A

)

.

Finally we comment that this is the third application of the peaks-over-
threshold method. The other two are: estimation of the exceedance probability
of a high level and high quantile estimation (Coles, 2001).

5.1 Simulations

We exemplify the lifting procedure with the process X(s) = Z(s)γ(s), with
γ(s) = 1 − s(1 − s)2, s ∈ [0, 1], and Z is the moving maximum process with
standard gaussian density. The Z process can be easily simulated in R-package
due to Ribatet (2012). In Figures 1–2 are represented the 11 out of 20 of these

processes for which RXi
(t) > 1 i.e. {X

(1)
j }11j=1 and the corresponding lifted

processes {X
(3)
j }11j=1 with t0 = 10.
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