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1 Introduction

Suppose we have observations x(si, t), si ∈ A ⊂ R2 , t = 0, 1, 2, ...T , i =
1, ..., nt from a non-stationary space-time process X(s, t), continuous in space
and discrete in time. Based on such data set, how can we make inference
on the extremal properties of X(s, t)? Specifically, we may want to estimate
probabilities such as

•
P (max

s∈A
X(s, T + 1) > u),

•
P ( max

1≤t≤T
max
s∈A

X(s, t) > u),

•
P (X(s1, T + 1) > u1, ..., X(sn, T + 1) > un),

for some high thresholds u1,...,un and for any locations s1,...,sn.
Let us start with the simpler case of extremes of a spatial process X(s),

s ∈ A ⊂ R2. As in the univariate and multivariate extreme value theory,
it makes sense to base our inference on asymptotic models. However, On the
account that in most applications, A is limited, it may not make sense to look for
asymptotics by expanding the space indefinitely, looking for similar asymptotics
as in the case of temporal extremes. Hence there are two alternatives to look
for aymptotics in space:

1. Start with iid replicates Xi(s) and look at the convergence of the con-
tinuous process max1≤i≤n Xi(s), as n → ∞, for all s ∈ A upon suitable
normalization

Yn(s) = an(s)−1( max
1≤i≤n

Xi(s)− bn(s)) →D Y (s). (1)

We will call this asymptotics, the de Haan approach.
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2. Start with a sufficiently fine grid(lattice) over A. characterize the extremal
properties of the process X(s) over this fine grid, and obtain asymptotics
by letting the grid sizes go to 0. This method is often called the Double
sum method of Pickand and used extensively by Piterbarg(1996) to ob-
tain limiting results for Gaussian random fields. However, I will call this
method Leadbetter-Albin method due to their extensive use of this tech-
niques in obtaining limiting results for the extremes of continuous time
processes.

Let us look closely the first method and the corresponding asymptotic models
for spatial extremes.

2 de Haan asymptotics

For a fixed s0 or for a finite collection of locations s1, .., sk, the conditions for
the convergence of (1), as well as the possible asymptotic models are well known
and are part of the univariate and multivariate extreme value theory. The con-
vergence of the stochastic process in (1) is more complicated but the results are
also complete. See for example, de Haan and Pereira(2006). Convergence is
assumed to occur with non-degenerate margins and when (1) converges weakly
or in distribution to a stochastic process Y (s), s ∈ A, (or any compact subset of
an Euclidean space) then the limiting process V (s) is a max-stable process, hav-
ing non-degenerate,univariate marginal GEV distributions. In order to obtain
mathematically tractable results and representations, the process in (1) is trans-
formed to have standard marginal distributions: If the functions an(s), bn(s)
are chosen in such a manner that for every s, the marginal limiting distribution
have the form

lim
n→∞

P (Yn(s) ≤ y) = exp(−(1 +
k(s)
σ(s)

(y − µ(s)))−1/k(s),

then Y (s) is transformed to

V (s) = (1 +
k(s)
σ(s)

(Y (s)− µ(s)))1/k(s), (2)

so that the limiting max stable process has unit Frechet margins given by

P (V (s) ≤ v) = exp(−v−1).

Here, k(s) is called the index (shape) function, σ(s) and µ(s) can be called scale
and location functions. In statistical applications, either all these functions are
assumed to be known or if estimated, their sampling variations are ignored in
order to get tractable representations.

When the limit exists, the max-stable process V (s) with unit Frechet margins
have the following very useful representation:

V (s) =d ∨∞i=1YiWi(s), (3)
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Figure 1: Realization of a max-stable process

where, Yi are the points of a point process defined on (0,∞) with mean measure
r−2dr and Wi(s) are i.i.d replicates of an arbitrary positive spatial process W (s),
s ∈ A, satisfying some conditions to ensure that the marginal distribution of
V (s) for each s is a unit Frechet distribution. Hence, W (s) is a process such
that E(W (s)) = ||A||, for every s ∈ A and E(sups∈A V (s)) < ∞. Here, the
mean measure r−2dr corresponds to the exponent measure of the unit Frechet
extreme value distribution.

Transformation (2) is crucial for the representation (3). To our knowledge,
there is no mathematically tractable representation for max stable processes
with non-unit Frechet margins (which i call non-stationary version, assuming
that shape, scale and location parameters are spatially varying functions) Non-
stationary version of this representation can be quite complicated. The point
process Yi in the representation (3) has to replaced by a non-homogenous point
process on R2 × (0,∞) with mean measure depending on the spatially varying
index, scale and location functions and the necessary conditions on W (s) to ren-
der a Frechet marginal distribution to V (s) with parameters k(s), σ(s), µ(s) at
every point s ∈ A would be intractable. Hence, in order to use the representa-
tion (3) as an asymptotic model for extremes of non-stationary data, Buishand
et all (2007) suggest using the following general steps:

1. Fit k(s), σ(s) and µ(s) locally using (temporal) block maxima data at
each location si (assuming that such temporal data at each location exist)

2. transform the data using (2), using these estimated functions.

3. In the representation (3), choose a specific parametric model for W (s).
Buishand et al(2007) suggest using exponential martingale, having a single
parameter which represents the degree of dependence of large values of the
process at two spatial locations . (Other alternative is to use a Gaussian
process, see Schlather(2002) for details.)

4. Estimate the parameter β of this latent process (see de Haan and Pereira,
2006)

5. 1/Yi is a Poisson point process on (0,∞) with mean measure dr, and
the points of this process can be constructed by sums of unit exponential
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random variables E1, E1 + E2,...E1 + E2 + ... + En... ,

6. Approximate V (s)

V (s) =
n

max
i=1

1
E1 + E2 + ... + En

W (s),

for some finite n. Buishand et al (2004) suggest that using n as low as 4
would be sufficient.

7. The transformation

η(s) = (1− exp(−W−1(s)))−1

results in a process whose marginal distributions are unit Pareto

8. Finally, the process

X(s) = σ̂(s)

(
η(s)k̂(s) − 1

k̂(s)

)
+ µ̂(s),

can be used for simulating extreme values of the spatial process.

The representation (3) and the consequent statistical inference is not flexible
enough to model extremes of non stationary spatial processes. First of all, tem-
poral data at each spatial location is not available to estimate these parameters
locally. Second, even if temporal data had exists at each location, these pa-
rameters often show spatial dependence and without taking into consideration
these spatial dependence, these estimators would show high bias. For example,
it is not possible to introduce other information into the inference in the form
of spatially varying explanatory variables. third, sampling variation that exist
in the estimators are not taken into consideration and hence the model given
in (3) is specified conditionally on the estimated parameters. Also, joint distri-
butions of spatial extremes beyond bivariate distributions are very difficult to
calculate. Ideally, we would like to use more flexible models which over come at
least partially these difficulties.

Bayesian Hierachical modeling and simulation Based inference techniques are
now accepted as the main principal tools for modeling spatial, non-stationary
data. See for example Banarjee et all(2004) for the general introduction to
Bayesian Hierarchical modeling. Typically, if we have block maxima data v(si),
i = 1, ..., n, where each v(si) represent the maximum of observations at loca-
tion si over a time interval, we may want to model v(si), i = 1, ..., n by a
Bayesian hierachical model assuming that conditional on the realization of a
latent spatial process W (s) and a set of explanatory variables chosen in ac-
cordance with the physical process governing the extremes, the data are inde-
pendent having GEV (k(s), σ(s), µ(s) distribution, where the spatially varying
(random) model parameters depend on the latent process W (s) and explana-
tory variables through properly chosen link functions. Once a proper parametric
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model for this latent process is chosen( often a Gaussian process) and prior dis-
tributions are assigned to the model parameters and hyper-parameters, then
simulation based inference techniques can be applied to make inference on the
posterior distributions of the model parameters, including the latent process,
as well as the joint predictive distributions of (V (s∗1), ..., V (S∗p) at any (unob-
served)locations (s∗1, ..., s

∗
p). Such models are very flexible and recently their

use has been increasing. See for example, Cooley(2006, 2007). Methodological
study of strategies for Bayesian hierarchical models for block maxima data, can
be found in Sang(2008). The principal point of start for using these modeling
strategies is that we want to use as model a spatial process whose univariate
marginal distributions are generalized extreme value distributions with space
dependent parameters, but have an arbitrary dependence structure. This de-
pendence structure is then introduced by a latent spatial process through the
model parameters and the observations, conditional on the realizations of this
latent process as well as other explanatory variables are independent, but not
identical. Such modeling strategy also bring the benefit of introducing meaning-
ful,important characteristics of the process under study into the model through
the model parameters, which may help justify the assumption of conditional
independence.

There is however, the question if these models are compatible with the
asymptotic theory, namely if such conditionally independent processes are max-
stable. At first look, such modeling strategies are hardly compatible with the
max-stable representation given in (3). However, we now give an justification
to show that these models indeed are compatible with the max stable processes
and hence with the asymptotic theory. Consider the spatial process V (s) defined
over s ∈ A ⊂ R2, given by

V (s) = Y (s)W (s), (4)

where for each s, Y (s) have marginal GEV (k(s), sigma(s), µ(s)) distribution
and for any s1, s2, ..., sp, Y (s1), ..., Y (si) are independent and W (s) is the posi-
tive spatial process given inthe representation (3) Note that, conditional on the
realizations of the latent process W (s),

P (V (s1) ≤ v1, ..., V (sn) ≤ vn|W (s1) = w1, ..., W (sn) = wn)

=
n∏

i=1

P (V (si) ≤ vi|W (sn) = wi)

=
n∏

i=1

GEV (k(si), σ(si)wi, µ(si)wi). (5)

Thus, the V (s) is a conditionally independent and have spatially varying
random scale and location parameters, having the same (non-random) shape
(index) function. Note also that the dependence structure to V (s) is intro-
duced by the latent process W (s) through the scale and location parameters.
Hence, conceptually, V (s) represents the conditionally independent, marginally
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GEV spatial process which is suitable for hierarchical modelling and we would
like to use as model for our block maxima data However, the process V (s)
is not max stable. For simplicity, take Y (s) ∼ GEV (1, 1, 1). If for any k,
V1(s), V2(s), ..., Vk(s) are independent, identical replicates of V (s) then

P (
1
k
∨k

i=1 Vi(s0) ≤ v)

= P (Y1(s0)W1(s0) ≤ kv, ...., Yk(s0)Wk(s0) ≤ kv)

=
∫

P (Y1(s0)W1(s0) ≤ kv, ...., Yk(s0)Wk(s0) ≤ kv|W1(s0) = w1, ...,Wk(s0) = wk)

× dP(W1(s0),..,Wk(s0)(w1, ..., wk)

=
∫

P (Y1(s0) ≤ kv/w1, ...., Yk(s0) ≤ kv/wk)dP(W1(s0),..,Wk(s0)(w1, ..., wk)

=
k∏

i=1

∫
P (Y (s0) ≤ kv/wi)dPW (s0)(wi)

=
k∏

i=1

∫
exp(−(kv/wi)−1)dPW (s0)(wi)

= Ek
W (e−(kv/W )−1

)

6= EW (e−(v/W )−1
).

we can similarly show that for any collection s1, ..., sn,

(
1
k
∨k

i=1 Vi(s1), ....,
1
k
∨k

i=1 Vi(sn) 6= (V (s1), ..., V (sn)

. Hence the process is not a max-stable process.
However, V (s)|W (s) = w is conditional max-stable, and hence V (s) is a

mixture of max-stable processes. Also, the process Y (s)W (s) is the max domain
of attraction of the simple max stable process (see arguments given in de Haan
and Pereira (2006), page 326) hence asymptotic dependence structure of the
two processes is the same and either process can be used for inference on the
dependence structure. It is easy to verify that when Y (s) are independent but
non-identical with marginal G(k(s), σ(s), µ(s) distributions, the process V (s) is
conditionally max stable, and hence is a mixture of max-stable processes and is
in the domain of attraction of the max stable process

V1(s) =
k(s)
σ(s)

(ν(s)k(s) − 1) + µ(s),

where ν(s) is the simple max stable process given in (3).
Therefore, it is our belief that conditionally specified, conditionally inde-

pendent Bayesian hierarchical GEV models are compatible with the asymptotic
theory, although they are not max stable processes.
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We also note that the strictly speaking, the model suggested by Buishand et
al(2007) is max-stable process conditional on the values of the estimated param-
eters: Once the parameters are estimated, their model results in a conditionally
specified model given by

V (s)|k̂(s), σ̂(s), µ̂(s), Θ̂

where k̂(s), σ̂(s), µ̂(s), are the model parameters, estimated marginally at
each location and Θ are the estimated parameters of the latent process W (s).
The ”unconditional” distribution of V (s) is obtained by the integration

FV (s)(v|k̂(s), σ̂(s), µ̂(s), Θ̂) =
∫

w

FV (s)(v|k̂(s), σ̂(s), µ̂(s), w)dPW (s)(w|Θ̂)dw.

Here, the process W (s) satisfy conditions so that for each s ∈ A,

FV (s)(v|k̂(s), σ̂(s), µ̂(s), Θ̂)

are respectively unit Frechet distributions. ((strictly speaking, the intensity
measure of the poisson process on A× (0,∞), or

−log(FV (s)(v|k̂(s), σ̂(s), µ̂(s), Θ̂))

is integrated with respect to PW (s)(w|Θ̂), and conditions on W (s) guarantee
that this integral is equal to v−1, resulting in unit Frechet marginals. See de
Haan and Fereira(2007) for details. ) The unconditional distributions FV (s)(v)
which are obtained by integrating out the sampling variation of these estimators
ofcourse need not have GEV margins and hence can not be max-stable.

Fundamental drawback of using conditionally specified GEV model is that
rarely there is time-block maxima data. Often, we do not have sufficient time
replicate data at each location to construct block maxima data for inference
on the GEV model. However, there is a very useful duality between model-
ing peaks over a high threshold and block maxima, equivalently between the
generalized Pareto distribution (GPD) and the Generalized extreme value dis-
tribution (GEV) in classical extreme value theory, which also exist for spatial
extremes, permitting more efficient use of spatial data.

Let u be a high threshold. For any x > 0, we can write

P (X > u + x) = P (X > u + x|X > u)P (X > u), (6)

and if Mn, the maximum of n iid random variables with distribution function
F satisfies

P (Mn ≤ z) ∼ G(z),

where
G(z) = exp[−(1 + k(

z − µ

σ
)−1/k],
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for some µ, σ > 0 and −∞ < k < ∞, then for sufficiently large enough threshold
u,

H(x) = P (X ≤ u + x|X > u)

∼ 1− (1 +
k

σ̂
x)−1/k, (7)

for x such that 1 + k/σx > 0 and σ̂ = σ + k(u − µ). H(x) is called the
Generalized Pareto distribution (GPD) and the parameters of the GEV model
G(z) can be uniquely determined by the parameters of the corresponding GPD
model H(x). See for example Coles (2001). This duality between the GEV
and the GPD models is often used in statistical inference for extremes, since
fitting the GPD models is more efficient due to the fact that all observations
above a high threshold are used in the inference, as compared to the block
maxima needed in fitting the GEV model. However, P (X > u) still needs to
be estimated from the data. This can either be done empirically, or as Coles
(2001) suggests by adding one more parameter to the model

H(x) = 1− η(1 +
k

σ
(x− u)−1/k , x > u

to estimate the tail probability

P (X > u + x).

Here, the parameter η is used for estimating the (fixed) probability P (X > u)
in the representation (6). See also Coles(2001), inference for extremes using the
Poisson model and its relation to the GPD model.

The duality between the GEV and GPD model extends to max-stable pro-
cesses as Buishand et all (2007) suggest: Consider the following GPD-process

V1(s) = Y W (s), ?? (8)

where Y (s) be is a process with marginal Pareto distribution function

P (Y ≤ y) + 1− 1
y

, y > 1.

Writing this distribution in the form

P (Y ≤ y) = 1− (1− (y − 1))−1,

we see that this is GPD distribution with k = 1, σ = 1 and u = 1. Buishand
et all(2007) call this random variable, the unit GPD random variable. Now,
let W (s) be the latent spatial process in the representation (3). V1(s) is in
the domain of attraction of the max stable process given in (3), hence the
asymptotic dependence structure of the max stable processes V (s) in (3) and
V1(s) are identical and inference on the extremal properties of the process can
equivalently be made on the V1(s) process. Note that this is similar to the
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duality that exist between the GEV and the GPD models in the univariate
case.

Note that the distribution of V1(s) conditional on W1(s) = w(s), is given by

P (V1(s) ≤ v|W1(s) = w(s)) = 1− (
1

w(s)
y)−1 , y > w(s)

is a GPD with k = 1, σ = w(s) and u = w(s). Hence, W1(s) introduces
independence through the scale and shape parameter of the GPD.

Note also that, for any s1 and s2 in A,

P (V1(s1) ≤ v1, V2(s2) ≤ v2|W1(s1) = w1,W1(s2) = w2) = P (Y ≤ min(v1/w1, v2/w2))

collapsing to the total dependence case. The dependence structure to the
bivariate random variable (V1(s1), V1(s2) is then introduced through integra-
tion of this degenerate distribution with respect to the joint distribution of
W (s1), W (s2) by

P (V1(s1) ≤ v1, V2(s2) ≤ v2) =
∫

P (Y ≤ min(v1/w1, v2/w2))dPW1(s1),W1(s2)(w1, w2).

Based on these facts, we suggest the model

V1(s) = Y (s)W (s), (9)

where W (s) is a (latent) spatial process and Y (s) is a process with marginal
distribution function GPD(k(s), σ(s), 0), representing the excesses over a fixed
but high threshold and for any s1, ..., sn, Y (s1), ..., Y (sn) are independent. The
marginal distribution of V1(s) conditional on w(s) = w, k(s) and σ(s) is given
by

P (Y (s) ≤ y/w(s), k(s), σ(s)) = 1− (1 +
k(s)

σ(s)w(s)
(y))1/k(s), (10)

which is GPD(k(s), σ(s)w(s), 0). Note that for any s1,s2,...,sn, V1(s), ..., V1(sn)
conditional on W (s1) = w(s1), ..., W (sn) = w(sn) are independent with

P (V1(s1) ≤ v1, ..., V1(sn) ≤ vn|w(s1), ..., w(sn)) =
n∏

i=1

GPD(k(si), σ(si)w(si), 0).

Hence, W (s) can be seen as a latent spatial process which introduces dependence
to the GPD process V1(s) through its scale parameter, and the GPD process
V1(s) is conditionally independent given the specification of its spatially varying,
random location scale parameter. Hence we suggest the following strategies for
modeling spatial extremal data:

• Model excesses over a high fixed threshold.

• Assume that the observations are independent having a GPD, conditional
on the realizations of a spatially varying random scale function, as well as
a random shape parameter which is spatially static.
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or

• if there is temporal data on each observational location, model the time
block maximal data by the the process (4).

• Assume that the observations are independent having a GEV distribution,
conditional on the realizations of a spatially varying random scale and
location functions, as well as a random shape parameter which is spatially
static.

As explained, such assumptions are clearly compatible with the de Haan asymp-
totics.

We give the basic hierarchical model for excess data over a fixed high thresh-
old. Full analysis of the GEV model as well as modelling strategies are given in
Sang(2008).

Suppose that X(s) is a spatial process and v = (v1(si), i = 1, ..., n) are
observed excesses of X(s) over a sufficiently high but fixed threshold u, so
that we assume them to be a realization of the process V1(s) given in (9).
Assuming a Bayesian set up, we assume that the shape parameter is random
but spatially static, whereas scale and location parameters are spatially varying
random functions. Based on this set up, we suggest the following hierarchical
model: Then

1.

p(v(s1), ....., v(sn)|k, σ(si), i = 1, ..., n) =
n∏

i=1

1
σ(s)

(1 +
k

σ(s)
(v(si))−1/k−1,

(11)

2. Assume that we have a prior information for k, given in the form of the
density function p(k|β) for −∞ < k < ∞, where β are the hyper param-
eters of this prior distribution.

3. σ(si) > 0 for each s ∈ A, hence we model σ(si) by

log σ(s) = σ0 + σ1W0(s)

W0(si) is a Gaussian process N(µ(si), Σ). Often, a parametric represen-
tation for µ(si, t) is given as

µ(si) = β0 + x(si)β′,

where x(si) are covariates and β are random regression coefficients having
prior distributions. Σ is a covariance matrix based on a valid, parametric
covariance structure. See for example, Banarjee et all(2004) for a list of
these valid covariance structures. Often it is preferential to write

log σ(si) = β0 + x(si)β′ + W0(si),

where W (s) is stationary Gaussian process with covariance Σ.
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4. Once prior distributions for the hyperparameters of the model are speci-
fied, the above model becomes a fully specified hierarchical model and well
established simulation based inference techniques can be used to estimate
the model parameters.

5. It is possible to introduce spatial dependence and heterogeneity to the
model through the shape parameter, by adding another link function of
the form

k(si) = k0 + αx′ + W1(si),

where W1(s) is another latent, Gaussian spatial process which may or may
not be independent of the latent process W (si). One possible dependence
structure for W0(s) and W1(s) is to start with two independent Gaussian
processes G1(s) and G2(s) and write

W (s) = G1(s),

and
W1(S) = a1G1(s) + a2G2(s),

for some parameters a1 and a2.

6. it is possible to introduce a spatially varying random location parameter
in the model. However, since the location parameter in the GPD is in
fact a truncation parameter for the part of the data which is used for
inference, implemetation of a Bayesian Hierarchical model with random
location parameter is difficult. Similar strategies such as those given by
Tancredi et al (2001) and de Zea Bermudez et all(2001) can be adopted
for spatial data.

7. Note that we model the excesses over a high threshold, that is, we model

P (X(s1) > x1 + u, ..., X(sn) > xn + u|X(s1) > u, ..., X(sn) > u),

for any collection of locations s1, ..., sn and for some high, fixed threshold
u In principle, we may want to make the inference based on at least one
component exceeding the fixed threshold. However, implementation of
the hierarchical model, due to the complications in the likelihood (see
Coles(2001), page 155 for complications in the bivariate distributions) is
very difficult. One alternative is to start with conditional approach to
multivariate extremes suggested by Heffernan and Tawn (2004) and adopt
these methods to spatial extremes.

The hierarchical model above and its numerical implementation, will report
on the joint predictive density of excesses at any location s1,...,sp,

p(v(s1), .., v(sp)|v),

in the form of simulated samples from this density. As a by product, joint
posterior densities of all model parameters including the latent random effect
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W0(s) can also be reported. Posterior expected values of the model parameters
as well as credible intervals can be calculated from the simulated samples from
the marginal posterior densities. The estimated posterior joint density of W (s)
is particularly useful, as it gives a very good picture of the dependence structure
as well as the spatial heterogeneity of the data.

Often, one needs to make inference on the joint probability P (X(s1) >
u+x1, .., X(sp) > u+xp) for arbitrary locations s1,...,sp and for a high threshold
u. Since

P (X(s1) > u + x1, .., X(sp) > u + xp)
= P (V1(s1) > x1, ..., V1(sp) > xp)P (X(s1) > u, ..., X(sp) > u), (12)

apart from the joint distribution of the excesses, one will need an estimate of
the joint probability

P (X(s1) > u, ..., X(sp) > u).

Empirical methods for estimating this probability may not be straightforward.
We suggest adopting and extending Cole(2001) suggestion:

Assume that there is an latent process W (s) such that conditional on W (s)
large values of X(s) over the threshold are independent, so that

P (X(s1) > u + x1, .., X(sp) > u + xp|W (s1) = w(s1), ..., W (sn) = w(sn)
= P (V1(s1) > x1, ..., V1(sp) > xp|W (s1) = w(s1), ..., W (sn) = w(sn))
× P (X(s1) > u, ..., X(sp) > u|W (s1) = w(s1), ...,W (sn) = w(sn))

=
n∏

i=1

P (V1(si) > xi|W (si) = w(si))P (X(si) > u|W (si) = w(si)) (13)

Writing η(si) = P (X(si) > u|W (si) = w(si) as a spatially varying random
parameter, we get the following hierarchical model for making inference on the
joint posterior distribution of X(s1) > u + x1, ..., X(sp) > u + xp :

1. likelihood:

2.

p(x(s1), ....., x(sn)|k, σ(si), η(si)i = 1, ..., n) =
n∏

i=1

η(si)
1

σ(s)
(1+

k

σ(s)
v(si))−1/k−1,

(14)

3. Since η(si) ∈ (0, 1), η(si) can be connected to the latent process W (si)
through the logit function:

log
η(si)

1− η(si)
= η0 + W (si).

specification of the other parameters would be same as in the previous
model. Note that for any si, in principle, η(si) is a very small positive
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number, hence prior distributions of the parameters in the link function
need to be finely tuned, otherwise it is very unlikely that the chain would
converge. In general, we would recommend simplification by assuming
that η(si) = η and η ∼ Beta(0.1, 10).

Conditional independence assumption by nature produce non-smooth re-
sponse surfaces. In order to remedy this situation and to relax conditional in-
dependence assumption, Sang(2008) suggests using the following structure for
the first stage of hierarchy to obtain smoother response surface:

V1(s) =
(

k(s)
σ(s)

Z(s) + 1
)1/k(s)

, (15)

Here, conditional independence assumption implies that Z(s) are iid unit GPD
random variables. Sang(2008) suggests introducing extra independence through
the Z(s) by assuming that

Z(s) = G−1(Φ(Z∗(s)),

where G is the unit GPD, φ unit Normal distributions and Z∗(s) is a spatio-
temporal Gaussian process. However, we will not pursuit this generalization.
However, Introduction of such extra dependence structure directly on the data
(apart from dependence introduced through model parameters) evidently may
make the model more flexible with smoother response surfaces, provided that
the data have enough information to capture such detailed latent dependence
structure.

Finally, above models can be extended to spatio-temporal data sets. If
V1(si, t), i = 1, ..., n(t), t = 1, ..., T are the excesses over a fixed threshold, then
a hierarchical model similar to (14) can be written, except that the latent 0
mean gaussian process W (s) is now replaced by a stationary 0 mean spatio-
temporal Gaussian process W (s, t). Valid stationary covariance structures for
such processes are given by Gneiding(2002). These covariance structures have
few parameters and conceptually, there are no problems in implementing MCMC
methods for these models. However, there are quite a few technical difficulties
in implementing these models in practice. The choice of prior distributions may
have big impact on convergence and it may not be possible to use vague priors
for all the parameters and hyper-parameters. Other possible technical problem
is the large dimension, although, in principle, this should not be a problem for
data sets appearing in extreme value problems. However, data sets having more
that 150 observations, will involve inversion of matrices of 150 × 150 in each
updating iteration, which often results in failure in convergence. Banarjee et
all(2006) discuss ways of overcoming this dimension problem.

Alternatively, one can use conditionaly independent GEV model as discussed
previously. See for example Cooley et (2007), or more recently H. Sang(2008)
on the strategies of implementing these models: Let Y (si, t) denote the block
maximum over some time period (say, annual) at some areal units or grid cells
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(or observation stations) si. Then, using conditional independence assumption,
the data can be modeled by

y(si, t) ∼ GEV (µsi,t, σsi,t, ksi,t).

Sang(2008) assumes

• k(si, t) = k,

• σ(si, t) = σi are spatial random effects,

• P (µ(si, t)|β, W (si, t), τ2) ∼ N(xT
i β,+W (si, t)), where xi are site specific

explanatory variables, β regression coefficients and W (si, t) is a spatial-
temporal random effect.

There are many alternative ways of modeling the spatial, temporal variation in
W (si, t). One possibility is to assume

W (si, t) = φi + δt,

δt = ψδt−1 + wt,

wt ∼ N(0,W 2
0 )

Sang(2008) suggests modelling δi and φi jointly by using coregionalization CAR
model:

• log σi = σ0 + λi,
(λi, φi)t = (A)(V1,i, V2,i)

• (V1,i, V2,i) are two independent CAR models

•
A =

(
a11 0
a12 a22

)
(16)

More complicated space-time structures for the scale and location parameters
can be given (Sang, 2008). However, it is doubthful that the extremal data will
be rich enough to give support for such complicated structures. The choice of
prior distributions are discussed in Sang(2008). The choice of these prior distri-
butions is crucial. Choosing non-informative priors for all the hyper-parameters
may not work, resulting in non-convergence of the chain.

If
yT+1 = Y (s1, T + 1), ...., Y (sn, T + 1)

represent the annual maxima of the process at the grid cells for next time period,
then they can be obtained by updating samples from the predictive density

p(yT+1|Data) =
∫

p(yT+1|Θ)p(Θ|Data)dΘ,
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where Θ are all the model parameters. Implementation of these models, using
metropolis-hasting algorithm is given in Sang(2008).

Conditional independence assumption by nature produce non-smooth re-
sponse surfaces. In order to remedy this situation and to relax conditional
independence assumption, Sang(2008) suggests using the following equation for
the first stage of hierarchy to obtain smoother response surface:

Y (s, t) = µ(s, t) +
σ(s, t)
k(s, t)

(z(s, t)k(s,t) − 1). (17)

Here, conditional independence assumption implies that Z(s, t) are iid unit
Frechet random variables. Sang(2008) suggests introducing extra independence
through the Z(s, t) by assuming that

Z(s, t) = G−1(Φ(Z∗(s, t)),

where G is the unit Frechet, φ unit Normal distributions and Z∗(s, t) is a spatio-
temporal Gaussian process. Here, µ(s, t),σ(s, t), k(s, t) are then modeled in the
usual manner explained above. .

Conditional independence assumption, or its relaxed forms (4.1) and (15)are
flexible ways of introducing dependence through the model parameters. Intro-
ducing structural dependence directly on the high dimensioned spatial data in
general is not efficient, due to the fact that one has to model and work with high
dimensioned non-Gaussian joint distributions. However, transformed Gaussian
processes and the respective Gaussian copula, as suggested by Sang(2008) is
particularly suited to hierarchical modeling: Let z∗(s) be a 0 mean, unit vari-
ance Gaussian process. A transformed process based on this gaussian process
can be constructed as

z(s) = G−1Φ(z∗(s)), (18)

where Φ(.) is the standard normal distribution and G(.) is the unit Frechet dis-
tribution. Given the correlation function of the z∗(s) process the corresponding
Gaussian copula function

Cz∗(u1, ..., un) = Fz∗(φ−1(u1), ..., φ−1(un)),

where ui ∈ [0, 1], and Fz∗ is the joint distribution of z∗(s1), ..., z∗(s1)) can be
constructed. If F (z) is the joint distribution of z, then

F (z) = Cz∗(Φ−1(G(z1), ..., Φ−1(G(z1)), (19)

and it can be shown that the marginal distributions of (19) are unit Frechet.
Hence, this construction results in a process with unit Frechet margins, whose
dependence structure is completely determined by the Gaussian Copula, which
in return is completely determined by the correlation structure of the z∗ pro-
cess. Although, this model can be adopted with some relative computational
ease, introduced dependence structure is arbitrary, fully specified by a bivariate
dependence specification and hence may not represent a flexible enough depen-
dence structure for extremes.
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Should one use the spatial GEV model or the spatial GPD model? Both
models are justified by the asymptotic theory and they infer equally on the
same dependence structure among extreme observations. If there are no long,
time series of observations at each observational locations, it is difficult to define
meaningful blocks and consequently block maxima data to fit the GEV model.
Defining spatial blocks to create block-maxima data without taking into con-
sideration strong local spatial dependence, is inconsistent with the global aim
of quantifying the effect of spatial dependence on the extremes. Therefore GPD
model seems to suit the spatial extremal data better. However, GPD model
depends on the proper choice of the high fixed threshold. There are difficulties
of introducing threshold uncertainty into the model. See For example, Tan-
credi et all (2002) or de Zea Bermudez et al (2001) for strategies of introducing
threshold uncertainity into the model. Even when the fixed threshold is chosen
successfuly, there is still the problem of estimation of the joint tail above the
fixed threshold P (X(s1) > u, ..., X(sp) > u), which can not be handled without
assuming the extra conditions leading to model (14).

We now apply these hierarchical modeling ideas to a excess wildfire data set.

2.1 A case study

In many fire regimes, a small number of very large fires is responsible for the
vast majority of the area burned and of the social and environmental damage
caused. Therefore, large wildfires are a relevant public policy issue , especially
considering that the frequency of occurrence of extremely severe fire weather
may increase, as a consequence of global warming Large fires are, from various
perspectives, qualitatively different from small fires. Large fires tend to occur
under specific, relatively uncommon synoptic meteorology conditions, typically
involving variable combinations of high temperatures, prolonged drought and
strong winds. They display extreme fire behavior patterns and spread mech-
anisms not observed in small fires. Fighting very large fires is qualitatively
different from fighting small fires, because the range of options for controlling
large fires is drastically reduced, in comparison with the diversity of options
available for initial attack. The degree of organizational complexity required for
fighting large fires scales up nonlinearly and logistical aspects take over tactical
considerations. The ecological effects of large fires also may differ qualitatively
from those of smaller events. It is therefore important to study extreme wildfires
regimes separately. Evident existence of Spatio-temporal variations and depen-
dencies, as well as the strong effect of meteorological, ecological and topological
covariates demand very flexible, highly parameterized models for the extremes of
wild fires. A review of the study of wildfire extremes can be found in Bermudez
et al (2007).

The study area corresponds to mainland Portugal (see Figure 2), located
between 37N and 42N latitude and between 6W and 10W longitude. Geograph-
ical stratification of the study area represents a compromise between the Por-
tuguese Forest Service standard procedure of organizing statistical fire data by
administrative units, and the natural regions classification of Portugal. The 18

16



administrative districts of Portugal were grouped into eight geographical units
that closely approximate the 12 natural regions, based on similarities of climate,
topography, vegetation, land use, population density, and fire incidence, namely
number of fires and area burned.

Figure 2: Geographical Regions

The data consist of 36180 size records of wildfires larger than 5ha, observed
in Portugal between 1984 and 2004. Fire perimeters were mapped from Landsat
5 Thematic Mapper and Landsat 7 Enhanced Thematic Mapper satellite im-
agery, with 30m spatial resolution, to a geographical scale of 1:100.000. About
170 satellite images, acquired annually after the end of the summer fire season,
were analyzed over the 20-year period. During the exceptional fire season of
2003, several large fires coalesced into huge, continuous fire scars, correspond-
ing to multiple individual fire events. It is unfeasible, using post-fire season
Landsat imagery to split these composite fire scars into their individual compo-
nents. Field data, from both the Forest Service and the Civil Protection Service
were also found inadequate to accomplish this task, due to geographical and or
temporal inaccuracies and missing information. Thus, work is under progress
using daily NOAA/AVHRR imagery, at 1km spatial resolution to unravel these
cases. These possible outliers are kept as part of the data, but they are highly
influential and introduce bias to inference, making the data more heavy tailed
that possibly is.

In Figure 3, the spatial locations of all recorded fires above 5 hectares as
well as the location of fires above 250 hectares are given for the years 2000 and
2004.

At present, no data on climatological, ecological as well as topological co-
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Figure 3: Locations of fires above 5 hectares (top) and locations of fires above
250 hectares (bottom)
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Figure 4: Administrative regions at district level, in Portugal

variates are available for the analysis. A latent spatially and temporally colored
random effect will be used to describe the spatial-temporal variations due to
these covariates.

Hence our data set is of the form

{x(si, t), i = 1, ..., nt, t = 1, 2, ..., 30}, (20)

where s = (s1, s2) are the spatial coordinates of the centroids of the recorded
fires, nt is the number of wildfires with sizes above 35 hectares in year t, t =
1975, ..., 2004.

2.2 Models

In order to account for the spatial variation of the large fire sizes, we divide
up the data into 18 administrative regions Dj , j = 1, 2, ...., 18, called districts
(see Figure 4). This geographical stratification of the study area represents
a compromise between the Portuguese Forest Service standard procedure of
organizing statistical fire data by administrative units, and the natural regions
classification of Portugal.

Let Nj(t) denote the number of fires with sizes over 250 hectares, observed
in region j, during year t. We suggest the following model for the excesses over
the threshold of 250 hectares conditional on (nj(t), j = 1, ..., 18, t = 1, ..., 30),
the observed number of fires in excess of 250 hectares in each region and year
to account for the spatial variation in the excess data:
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1. Level 1: likelihood

p(z(sij , t), i = 1, 2, ..., nj(t), t = 1, ..., 30; j = 1, ..., 18|(nj(t), j = 1, ..., 18, t = 1, ..., 30), ησ,Θ)

=
30∏

t=1

18∏

j=1

nj(t)∏

i=1

p(z(sij , t)|k, σ(sij , t), u(sij , t)), (21)

where,

p(z(sij , t)) = GPD(k, σ(sij , t))

=
1

σ(sij , t)

(
1 +

k

σ(sij , t)
z

)−1−1/k

(22)

in year t. Here the location sij belongs to region j, indicating the ith
location belonging to the jth region.

2. Level 2: link Functions

(a)

log(σ(sij , t)) = σ0 +W (j)+Wj(sij)+α1N1(j, t− 1)+α2N2(j, t− 1)
(23)

Here N1(j, t− 1) and N2(j, t− 1) are exploratory variables, denoting
respectively the (normalized) average burned area and (normalized)
average number of fires in t− 3, t− 2 and t− 1 in district j, whereas
α1, α2 are scalar regression parameters. Here, W (j) is a latent dis-
crete process modeled by a nearest neighbor CAR model (see Ba-
narjee et al,2004 ) representing low resolution dependencies between
the regions, and Wj(sij) is another latent, region specific Gaussian
process representing high resolution dependencies within each region.
Here, W (i) represent the unobserved explanatory variables acting on
larger distances, such as temperature and other global atmospheric
conditions, whereas Wj(s) represent unobservent local explanatory
variables such as vegetation, wind speed, wind direction,local topo-
logical conditions etc.

(b) For mathematical simplicity, we will assume that the shape param-
eter has no spatial structure, although this is not realistic based on
the information we have from the historical data. Theoretically, the
shape parameter k can take values in (−∞, +∞). However, prelimi-
nary data analysis of historical data indicated that the shape param-
eter has a mode around 0.47. Hence we use as prior for k a vague
beta distribution, restricting it to the interval [0, 1]. This prior distri-
bution matches with the expert opinion that the fire size distribution
should have finite mean but heavy tailed. Hence, we assume

k ∼ beta(0.5, 0.5). (24)
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3. Level 3: parameters, priors, hyper-parameters and hyper-priors
We will not discuss the in detail the prior distributions for the hyper
parameters here. Ideally, all prior distributions should be vague, but con-
vergence without being specific for some of the hyperparameters can not
be guaranteed. Therefore priors for some of the precision parameters need
to be informative.

Note that the likelihood is conditional on the fixed values of the The counting
processes Nj(t), j = 1, ..., 18, t = 1, ..., 30. These processes can also be modeled
by BHM, but we will not discuss this problem here. See Mendes et all (2008) for
the details of these models and the model fitting details. We only remark that
such models can be implemented by using BUGS. More complicated models
where the shape parameter is assumed to vary spatially are also implimented
using the BUGS software.

3 Leadbetter-Albin Asymptotics

We start with a spatial process X(s), s ∈ S ⊂ R2, continuous in space and give
an asymptotic expression for

P (sup
s∈S

X(s) > u), (25)

as u →∞ for fixed intervals S = [0, h1]× [0, h2].
This asymptotic expression will be given in terms of the stationary distribu-

tion P (X(0, 0) > u), as well as in terms of the local clustering of large values
of the process. This characterization is based on starting with a sufficiently
accurate discrete version of the spatial process over a discrete grid, deriving
the distribution of the maximum over that discrete grid, then using limiting
arguments to tie the results to the maximum of the continuous process. Al-
bin(1987, 1990) gives the sufficient conditions and the characterization of the
limiting distribution for

P ( sup
t∈[0,h]

X(t) > u),

as u → ∞, for fixed intervals [0, h], where X(t) is a stationary process. Al-
bin(1987, 1990) also extend the results to increasing intervals. See also Lead-
better et al (1983). There are basically 4 sets of conditions to achieve such
results:

• Existence of a sufficiently fine grid over which the maxima of continuous
process and its discrete version over this grid asymptotically match. Note
that when X(t) is a separable process, then there is always a countable
version, and further, if the process is continuous in probability then the
dyadic numbers are a separant. However, for many processes, the minimal
grid need not be so dense.

• Behavior of the process in a very small neighborhood of a upcrossing,
which defines the formation of clusters of large values.
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• A condition on the local dependence behavior of the process, restricting the
size of these clusters by assuming that the exceedances are short lasting.
This condition in many ways resemble and is in the same spirit as the
condition D′(un) condition often assumed for obtaining asymptotic results
for the extremes of discrete random sequences.

• And finally, for extending the results to increasing intervals, two further
dependence assumptions are needed,one being a mild mixing condition,
other restricting the formation of clusters of clusters.

We assume similar set of conditions for the stationary spatial process and
by extending the Albin(1987) techniques, we obtain an asymptotic expression
for (25), when the process is heavy tailed, although results extend to other
types of tail behaviour. Here, we give a brief summary of the results. Detailed
calculations can be found in Anderson and Turkman(2008)

4 Main results

We will assume that the stationary field X(t1, t2) is also isotropic, satisfying the
following conditions:

• (1) Domains of attraction criteria:

Assume that there exists a strictly positive constant c such that

lim
u→∞

1− F (ux)
1− F (u)

= x−c, (26)

for all x > 0, so that F belongs to the Frechet domain of attraction.

• 2 Minimal discrete approximation:

Assume that there is a positive, non-increasing function q = q(u), with
limu→∞ q(u) = 0, such that as a → 0,

q2(u)
1− F (u)

P (M(h1, h2) > u, max
0≤iaq≤h1,
0≤jag≤h2

X(iaq, jag) ≤ u) = 0, (27)

where M(h1, h2) = max(t1,t2)∈[0,h1]×[0,h2] X(t1, t2). We call the grid

δ = {(iaq, jaq), i = 0, 1, ..., [h1/aq], j = 0, 1, ..., [h2/aq]}

satisfying (27), the Pickand grid. For ease in notation, let

Mδ(h1, h2) = max
0≤iaq≤h1,
0≤jag≤h2

X(iaq, jag),

the maximum of the process over the Pickand grid.
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• 3 Local clusters:

For any t1 ∈ [0, h1], let

Y (t) = max
0≤t2≤h2

X(t1, t2),

be column-wise maximal process traveling along the x-direction and

Y (iaq) = max
0≤j≤[h2/aq]

X(iaq, jaq),

for i = 0, 1, 2..., [h1/aq] be the discrete version of Y (t) over the pickand
grid. For any integer N > 0, and fixed i, let

YN (iaq) = max
0≤j≤N

X(iaq, jaq),

and assume that

there exists random variables {ηa(k)}N
k=1, such that for any a > 0,

(
1
u

X(0, jaq), i = 1, .., N | 1
u

X(0, 0) > 1
)
→D {ηa(k)}N

k=1, (28)

and further there exists random variables {ζa(k)}N
k=1 such that for any

a > 0,
(

1
u

YN (iaq), i = 1, .., N | 1
u

YN (0)) > 1
)
→D {ζa(k)}N

k=1. (29)

• 4 Short lasting exceedances:

as N →∞, for every a > 0,

lim
u→∞

1
1− F (u)

h1/aq∑

i=0

h2/aq∑

j=0
√

i2+j2≥N

P (X(0, 0) > u,X(iaq, jaq) > u) = 0.

(30)

Albin(1987) assume the condition (28) for the characterization of local clus-
ters of large values of a continuous process. (29) is an extra condition needed
to extend the formation of clusters in the case of random fields. Note that the
process Y (t) is the y-column maxima of the field traveling along the x-direction,
and condition (28) explains how this process clusters along the x-direction in
a similar fashion to (28). The characterization of local clusters over a high
threshold using the characterization of local clusters in terms of coordinate-wise
processes is mathematically very convenient. However, it is may not be easy
to verify condition (29). Hence, one may want to characterize the formation of
local clusters by assuming a similar condition to (28), directly on the random
field, such as for example, the existence of the limit

(
1
u

X(iaq, jaq), i, j = 1, ..., N |X(0, 0) > u

)
→D {θa(k1, k2)}N,N

i,j=1 (31)
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However, this seems to be difficult, if not impossible.
Let M(h1, h2) = max 0≤t1≤h1,

0≤t2≤h2

X(t1, t2).

Theorem 1
Under the assumptions (26)-(30), the limits

H1 = lim
a→0

1
a
P (max

k≥1
ηa(k) < 1), (32)

and
H2 = lim

a→0

1
a
P (max

k≥1
ζa(k) < 1), (33)

exist with H1 ∈ (0,∞), H2 ∈ (0,∞) and

lim
u→∞

q2(u)
1− F (u)

P (M(h1, h2) > u) = h1h2H1H2, (34)

4.1 Alternative conditioning

An alternative form of theorem 1 can be given if we condition our probabilities
on the event {X(0, 0) = ux} and {YN (0) = ux} for some x > 1, rather than on
{X(0, 0) > u} and {YN (0) > u} as is given in section 2.

Assume that

• F (x) and G(x)have densities f1 and f2 such that

lim
u→∞

uf1(u)
1− F (u)

= c > 0

and

lim
u→∞

uf2(u)
1−G(u)

= d > 0.

Further assume that there exists variables {ηa,x}N
k=1,{ζa,x}N

k=1 such that
for every a > 0 and x > 1,

(
1
u

X(0, jaq), i = 1, .., N | 1
u

X(0, 0) = x

)
→D {ηa,x(k)}N

k=1,

and (
1
u

YN (iaq), i = 1, .., N | 1
u

YN (0)) = x

)
→D {ζa,x(k)

Assume further that the approximation

lim sup
u→∞

1
a2(1− F (u))

P (M(aq, aq) > ux(1 + δ), X(0, 0) ≤ ux) = 0, (35)

holds for every δ > 0 and x ≥ 1.
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Then
Theorem 4

lim
u→∞

q2(u))
1− F (ux)

P (M(h1, h2) > ux) = h1h2H1(x)H2(x), (36)

where
H1(x) = lim

a→0

1
a
P

∫ ∞

1

P ((max
k≥1

ηa,xy(k) < 1)cy−(c+1)dy, (37)

and
H2(x) = lim

a→0

1
a
P

∫ ∞

1

P ((max
k≥1

ζa,xy(k) < 1)dy−(d+1)dy. (38)

With this conditioning in hand, we can state the following Theorem:
Theorem
For any x > 0 fixed,

lim
u→∞

q2(u)
1− F (u)

P (M(h1, h2) > ux) = x−cH1(x)H2(x).

At first sight, this result suggest that the limiting distribution may not be in the
domain of attraction of the GEV. However, it can be shown that the function
q(u) is regularly varying and H1(x)H2(x) ∼ x−d for some d < c so that

lim
u→∞

q2(u)
1− F (u)

P (M(h1, h2) > ux) = x−c∗H1H2,

for some c∗ < c.
How can these asymptotics be used for finding meaningful models for spatial

extremes? For continuous time series, Albin(1990) looks at some special non-
Gaussian processes (rayleigh type process, ie squares of Gaussian processes),
verify conditions and derive the local cluster parameter H. Such exercise would
be quite difficult for spatial processes, as one needs to know the sample path
properties of the column maxima process Y (t). However, since H1 and H2

are coordinate wise clustering of two processes along the coordinates, discrete
approximations to such quantities can be made by using the known methods of
extremal index estimation. However, at present, such asymptotical results are
not particularly useful in modelling spatial extremes.
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