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Abstract: Usually randomness appears as a sophisticated extension of 

deterministic models, that are then presented as expectation of some class of random 

models (this approach is exceedingly well managed in the classical Barucha-Reid’s 
treatise on random functions and stochastic processes). The works [1], [2], [3] and [5] 
summarize previous studies by the authors, using stochastic definitions of extensions 
of Cantor’s fractal to put forward appropriate deterministic models, that in a precise 
sense are the expectation of a structured class of models, and investigated 

bifurcations, Allee’ effect, and the Hausdorff dimension.  qp,Beta  models, with 

either 1p  or 1q , or the classical Verhulsts model  2 qp , proportionate 

interesting computable models for which computations both of Hausdorff dimension 
and probabilities can be explicitly evaluated, either analytically or using the Monte 
Carlo method.  
The present extension, axed on arbitrary symbolic dynamical systems, further 

develops new fundamental classes of geometric constructions, and exploits the 
interplay of determinism and randomness on the richness of the limit fractal set, in a 
recursive construction. This sheds new light on the concept of Hausdorff 
dimensionality. We show that the dependence of the random order statistics is at the 
core of the apparent anomaly of consistently smaller Hausdorff dimensions of the 
random sets, when compared with the corresponding “expected” deterministic 
counterparts. We also recover Falconner’s, Pesin’s and Weiss’ (among others) ideas 
on recursive geometric constructions as a straightforward approach to important 

issues in fractality and chaos. 

Keywords:  qp,Beta  densities, Random and deterministic  qp,Beta -

Cantor sets, Hausdorff dimension. 
 

1. Introduction 
 
Our research has been aimed at defining and characterizing a new structure of 
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random Cantor sets when the middle sets removed at each step have a 

 qp,Beta  law, with 1q , [5], and with 2q , [3]. In this work, we 

generalize these ideas to any other values of the parameter 0q . In section 

2, we formally define random and deterministic  qp,Beta -Cantor sets. In 

section 3, we developed methods to determine the Hausdorff dimension of 

these new sets, and in last section we present some numerical results which 

show that the Hausdorff dimension of a certain random  qp,Beta -Cantor set 

is smaller than the Hausdorff dimension of the correspondent deterministic 

 qp,Beta -Cantor set, as a consequence of Jensen's inequality. 

 

2. Random and deterministic Beta(p,q)-Cantor sets 
 

Consider that we remove the middle subinterval  (0,1)
22:

(0,1)
2:1

(0)
1 X,XS  , from 

the interval  10, , where (0,1)
2:1X and (0,1)

22:X  are the minimum and maximum, 

respectively, of two independent observations of a random variable 

 qp,BetaX (0)
1 . After that, in each step n, we remove the middle 

subinterval  1-n
kS  in each one of the 1

2,2,1,



n

k   intervals remaining 

from the n-1 previous step. This procedure corresponds to a new geometric 

construction of random type using the distribution beta with shape parameters 

p and q, with adequated support in each interval remaining. In this work, as a 

similar way to the one used to define the random middle third Cantor set, 

random  1p,Beta -Cantor sets, [5], and random  2p,Beta -Cantor sets, [3], 

we present the general definition of the random  qp,Beta -Cantor sets. 

 

Definition 1: Let (0)
1X  be a  qp,Beta  random variable defined in the 

interval  10, , (0,1)
2:1X and (0,1)

22:X  be the minimum and the maximum, 

respectively, of a random sample of dimension two from  qp,BetaX (0)
1 . 

Let, 

  ;10, (0)
10 JF   

      ;1
(1)
2

(1)
1

(0,1)
2:2

(0,1)
2:1

(0,1)
2:2

(0,1)
2:101 \ JJ,XX0,X,XFF    

 
12

1

1
1






 

n

k

n
kn JF  and 

 
n

k

n
kn JF

2

1

 , where for each ,2,2,1, 1 nk   

          k,nk,n1-n
k

n
k

n
k X,XJJJ \ 1

22:
1

2:1212


   

with  k,nX 1
2:1
 and  k,nX 1

22:
  the minimum and the maximum of a random 

sample of dimension two of 
    11   n

k
n

k Jq,p,BetaX , respectively. The 
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random fractal connected to a general random variable X, i.e., the random 

 qp,Beta -Cantor set, is 







0n

nqp, FF . 

 

In a correspondent deterministic approach, we consider the intersection of the 

sets obtained starting from the interval  10, , and removing iterativelly the 

middle expected subinterval      k),-(nk,-n X,X 1
22:

1
2:1 EE . 

Therefore, formally, we can defined the deterministic  qp,Beta -Cantor set 

as follows: 

 

Definition 2: Let (0)
1X  be a  qp,Beta  random variable defined in the 

interval  10, , i.e.,  qp,BetaX (0)
1 , where  (0,1)

2:1XE  and  (0,1)
22:XE  are the 

expected values of the minimum and the maximum of a random sample of 

dimension two of (0)
1X , respectively. Let, 

  ;10, (0)
10 JH  

           ;1 (1)
2

(1)
1

(0,1)
22:

(0,1)
2:1

(0,1)
22:

(0,1)
2:101 \ JJEEEE   ,XX0,X,XHH

 
1n

k

1-n
knH





 
2

1

1 J  and 
 

n

k

n
knH

2

1

 J , where for each ,2,2,1, 1 nk   

            k,nk,nn
k

n
k

n
k X,X\ 1

22:
1

2:1
1

212


  EEJJJ   

with   k,nX 1
2:1


E and   k,nX 1
22:


E  the expected values of the minimum and 

the maximum of a random sample of dimension two of 
    11   n

k
n

k q,p,BetaX J , respectively. The “mean” fractal or the 

deterministic  qp,Beta -Cantor set, is 







0n

nqp, HC . 

 

Note that, the deterministic  qp,Beta -Cantor sets qp,C satisfy the open set 

condition, [4]. 

 

Remark 3: Considering 
    11 


n

k
n

k q,p,BetaX J , its distribution function 

is given by: 
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   
 

   

       xxt
q,p,B

tt
xF

,b

x

a

n
k

1qp

X
n

k
n

k
n

k

n
k 







 


  11

1

1 IId
1

1

1

JJ
 

with       111   n
k

n
k

n
k b,aJ . The mean values of the minimum and maximum 

of a two dimensional random sample, can be calculated as follows: 

     
 

 

 
    

 

)1(dd
1

1d1

1

1 1

1

1

2

1

1
21,

2:1  



 



 






















n
k

n
k

n
k

n
k

n
k

b

a

x

a

n
k

1qpb

a

X
kn xt

q,p,B

tt
-xxF-X

J
E

 

and 

      
 

 

 
    

 

)2(.dd
1

1d1

1

1 1

1

1

2

1

11
21,

22: xt
q,p,B

tt
-xxF-X

n
k

n
k

n
k

n
k

n
k

b

a

x

a

n
k

qpb

a

X
kn

 



 



 






































J
E

 

3. The Hausdorff dimension of the random and deterministic 

Beta(p,q)-Cantor sets 
 

The definition of random fractals presented in previous section, preserves one 

of the main features of fractality, namely self-similarity, but more 

sophisticated, in essence that the self-similarity of deterministic fractals: 

 In the random  qp,Beta -Cantor set qp,F , we have 

    nFFF 1010, , a decreasing sequence of closed 

intervals, where nF  is the union of n2  closed and pairwise disjoint 

intervals  n
kJ . 

 Each interval  1-n
kJ  of 1-nF  contains two intervals of nF , since the 

middle interval from the three intervals with (dependent) random lengths 

in which 1-nF  is divided, is always eliminated in the following step n. 

These intervals are denoted by  n
kJ 12   and  n

kJ2 , respectively. The left 

endpoint of  n
kJ 12   coincides with the left endpoint of  1-n

kJ  and the right 

endpoint of 
 n
kJ2  coincides with the right endpoint of 

 1-n
kJ . 

 The lengths of the intervals  n
kJ 12   and 

 n
kJ2 , denoted by  n

kJ 12

~
  and 

 n
kJ2

~
, 

respectively, are random variables, and we inforce random self-similarity 

requiring the ratios 
 

 

 1-n
k

n
kn

k
J

J
C ~

~
12

12


   to have the same probability 
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distribution throughout, for any of the steps n-1 and n, and for any 

interval  1-n
kJ  of 1-nF , and also that the ratios 

 
 

 1-n
k

n
kn

k
J

J
C ~

~
2

2   have the 

same probability distribution, for any of the steps n-1 and n, and for any 

interval  1-n
kJ  of 1-nF . Note that, the ratios  n

kC 12   and  n
kC2  do not 

necessarily have the same probability distribution and they are not 

independent. 

As we assume that, for all steps n, with 2,1,n , all the ratios  n
kC 12   have 

the same probability distribution, we can use in particular the ratio: 

)3(0
~

1

~

~

~
(0,1)
2:1

(0,1)
2:1

(1)
1

(1)
1

(0)
1

(1)
1(1)

11 XXJ
J

J

J
CC   

and similarly, as we assume that in each step the ratios  n
kC2  do have the 

same probability distribution, the ratio is: 

)4(.1
~

1

~

~

~
(0,1)

22:
(1)
2

(1)
2

(0)
1

(1)
2(1)

22 XJ
J

J

J
CC   

In view of the geometric construction of the above random sets, and of 

Falconer’s Theorem 15.1, [4], we compute the Hausdorff dimension of the 

random  qp,Beta -Cantor set using the equation   121  ss CCE . 

For  qp,BetaX (0)
1 , the probability density functions of the minimum and 

of the maximum of a two dimensional random sample are given by: 

      xfxFxf
XXX

(0)
1

(0)
1

(0,1)
2:1

12   and       ,2 (0)
1

(0)
1

(0,1)
2:2

xfxFxf
XXX

  

where  xF
X

(0)
1

 and  xf
X

(0)
1

 are: 

 
 

     xxttt
qp,B

xF
qp

x

0

X )(1,(0,1)
11 IId1

1
(0)
1


    

and 

 
 

   xxx
qp,B

xf
qp

X (0,1)
11 I1

1
(0)
1

  . 

The expected values of the transformations of the random variables sC1  and 

sC2  are given by: 

    
1

0

(0,1)
2:1 d(0,1)

2:1

xxfxX
X

ss
E    and        

1

0

(0,1)
22: d11 (0,1)

2:2

xxfxX-
X

ss
E . 

Now, we can state the following result: 
 

Theorem 4: Whit probability 1, the random  qp,Beta -Cantor set qp,F  has 
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Hausdorff dimension qp,H FDim  equal to s, where s is the solution of the 

equation 

      11 (0,1)
22:

(0,1)
2:1  ss X-X EE . 

On the other hand, to determine the Hausdorff dimension of the deterministic 

 qp,Beta -Cantor set, we use an analogous version of the Theorem 9.3 of 

Falconer, [4]. Nevertheless, it is necessary to determine the similarity ratios 

used in each step of the deterministic  qp,Beta -Cantor set construction. 

Considering that the randomness of the  qp,Beta -Cantor sets comes from 

the minimum and the maximum of a random variable with beta distribution, 

we have only two similarities. 

Having in mind that, in each step n the ratios  n
kC 12   have the same 

probability distribution, and the ratios  n
kC2  also have the same probability 

distribution, as explained before, and using (3) and (4), then: 

   (0,1)
2:11 XC EE   and    (0,1)

22:2 1 XC EE  . 

Therefore, the similarity ratios are  (0,1)
2:11 Xc E  and  (0,1)

22:2 1 Xc E  to 

the left and right intervals, respectively. The expressions of  (0,1)
2:1XE  and 

 (0,1)
22:XE  were calculated from Eqs. (1) and (2). So, we can state the 

following result: 
 

Theorem 5: Let iS  denote the similarities defined on IR , with ratios ic , 

with 21,i . If qp,C  is the invariant set satisfying  
2

1


i

qp,iqp, CSC  then 

sCDim qp,H   where s is the solution of the equation 

      11 (0,1)
22:

(0,1)
2:1  ss XX EE . 

 

4. Numerical Simulations 
 

At first sight the intuitive (but misguided) idea is that the random fractal qp,F  

should have a bigger Hausdorff dimension than the correspondent “mean 

fractal” qp,C ; In fact, the distribution of the retained spacings is skewed, and 

thus, the probability of retaining larger portions than in the deterministic 

fractal is higher than 0.5. But as a consequence, the removed portion in later 

steps is big, and the overall effect is that the random fractal is less dense, as 

explained below. 
To gain a deeper insight, we are going to evaluate the probability that the 

sum of the lengths of the intervals removed until the step n in the 
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construction of the random fractal, which we shall denoted by  n
R,S2  in what 

follows, is greater than the sum of the lengths of the intervals removed until 

the step n in the construction of the correspondent “mean fractal”, denoted by 
 n

D,S2  in what follows. This evaluation cannot be done analytically, but the 

evaluation is readily performed using Monte Carlo methods. 

To make the Monte Carlo simulation for determining these probabilities and 

the correspondent 95% confidence intervals, we used in each case 5000 runs. 

On the other hand, in order to compute  n
D,S2  of the “mean fractal” qp,C , 

observe that in the first step we obtain    10(1)
2

(1)
1 b,a,  JJ , where 

 (0,1)
2:1

(0)
1 Xaa E  and  (0,1)

2:2
(0)
1 Xbb E . A straightforward extension is 

stated in the theorem that follows: 
 

Theorem 6: The length of the sum of the intervals removed in the 

construction of a “mean fractal” qp,C , until the step n, is given by 

     nn
D, baS  112  

with 2,1,n , where  (0,1)
2:1Xa E  and  (0,1)

22:Xb E . 
 

The proof of this theorem can be seen in [2]. 
 

In Table 1, we compute the probability that the accumulated length of the 

random middle sets removed in the recursive construction of the random 

 qp,Beta -Cantor set qp,F  be greater than the accumulated length of 

removed subintervals in the construction of the corresponding deterministic 

 qp,Beta -Cantor set qp,C , for some values of p and q. While in the first 

steps this probability is less than 0.5, in the next steps, for small values of p, 
the odds are in favour that the length of the removed random set exceeds the 

length of what has been removed in its deterministic counterpart. In fact, at 

each step of the recursive construction of the random fractal and of its 

deterministic correspondence, this pattern will apply: the probability that the 

accumulated length of the removed intervals in the random case exceeds the 

accumulated length of the removed intervals in the corresponding 

deterministic fractal increases steadily. 

The dependence structure of order statistics, skewness and the consequent 

unequal mean and median contribute to this surprising reversal, and this 

deeper analysis of the situation shows that we should indeed expect that the 

random fractal be less dense in  10, . Thus, smaller Hausdorff dimension is 

indeed a coherent result. This is a consequence of Jensen's inequality. 

Although the Hausdorff dimensions of both the random and the 

corresponding deterministic  qp,Beta -Cantor sets increase with p, we have 
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qp,Hqp,H CDimFDim  . 

 

Table 1: Estimated probability of 
    n

D,
n
R, SS 22 P  and respective confidence interval 

 Beta(1,1) Beta(2,1) Beta(3,1) 

Step Est.Prob 95% Conf. Int. Est.Prob 95% Conf. Int. Est.Prob 95% Conf. Int. 

1 0.4570 (0.4432;0.4708) 0.4252 (0.4115;0.4389) 0.4222 (0.4085;0.4358) 

2 0.5148 (0.5010;0.5287) 0.4834 (0.4696;0.4973) 0.4890 (0.4751;0.5028) 

3 0.5516 (0.5378;0.5654) 0.5176  (0.5038;0.5315) 0.5182 (0.5043;0.5320) 

4 0.5744 (0.5607;0.5881) 0.5354 (0.5216;0.5492) 0.5246  (0.5107;0.5384) 

5 0.5776 (0.5639;0.5913) 0.5430 (0.5292;0.5492) 0.5402 (0.5263;0.5540) 

6 0.5936 (0.5800;0.6072) 0.5462 (0.5324;0.5600) 0.5476  (0.5338;0.5613) 

7 0.6002 (0.5866;0.6138) 0.5512 (0.5374;0.5649) 0.5524 (0.5386;0.5661) 

8 0.6048 (0.5913;0.6184) 0.5496 (0.5358;0.5633) 0.5556 (0.5418;0.5693) 

9 0.6084 (0.5949;0.6219) 0.5528 (0.5390;0.5665) 0.5616 (0.5478;0.5753) 

10 0.6098  (0.5963;0.6233) 0.5500 (0.5362;0.5637) 0.5630 (0.5492;0.5767) 

 Beta(1,2) Beta(2,2) Beta(3,2) 

Step Est.Prob 95% Conf. Int. Est.Prob 95% Conf. Int. Est.Prob 95% Conf. Int. 

1 0.4398 (0.4260;0.4536) 0.4300 (0.4163;0.4437) 0.4230 (0.4093;0.4367) 

2 0.5012 (0.4873;0.5151) 0.4898 (0.4759;0.5037) 0.4836 (0.4697;0.4975) 

3 0.5252 (0.5114;0.5390) 0.5128 (0.4989;0.5277) 0.5034 (0.4895;0.5173) 

4 0.5374 (0.5236;0.5512) 0.5222 (0.5084;0.5360) 0.5190 (0.5052;0.5328) 

5 0.5454 (0.5316;0.5592) 0.5232 (0.5094;0.5370) 0.5282 0.5144;0.5420) 

6 0.5574 (0.5436;0.5712) 0.5266 (0.5128;0.5404) 0.5346 (0.5207;0.5484) 

7 0.5638 (0.5501;0.5775) 0.5254 (0.5116;0.5392) 0.5388 (0.5250;0.5526) 

8 0.5636 (0.5499;0.5773) 0.5266 (0.5128;0.5404) 0.5470 (0.5332;0.5608) 

9 0.5666 (0.5529;0.5803) 0.5258 (0.5120;0.5396) 0.5492 (0.5354;0.5630) 

10 0.5684 (0.5547;0.5821) 0.5274 (0.5136;0.5412) 0.5502 (0.5364;0.5640) 
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