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Abstract

Allowing weights w /∈ [0; 1], non-convex mixtures increase usual mixtures

flexibility. Applications can be found, for instance, in internet traffic or

queueing systems. For distribution families closed under minimization, we

investigate finite mixtures with negative components. Our main purpose is

to define this new mixtures and to study their properties.

keywords: negative weights, closed distributions, exponential mixtures.

AMS: 60E05

1 Introduction

Convex mixtures are indeed the most studied type of mixtures, specially

because their weights can be regarded as subpopulations proportions. How-

ever, the condition w ∈ [0, 1] is restrictive, and more flexible models are

useful when modelling some data types.

Bartholomew (1969) and Steutel (1967, 1970) developed some preliminary

work on this subject for non-convex mixtures of exponentials, and many

applications have been developed recently. Gaussian mixtures also have been

used in applied problems, but for other distributions non-convex mixtures

have not received great attention from researchers.

In this paper we introduce a new class of distributions, called distributions
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closed under minimization, and use this new distribution family to develop

non-convex mixtures with two components. Mixture moments, mode, and

random numbers generation are also studied in this work. Finally, some

possible extensions are discussed.

2 Distributions Closed Under Minimization

Definition 1.

Let X1, ..., XN be a sequence of independent and identically distributed ran-

dom variables to X ∼ F (x). F is closed under minimization (X1:N) if

X1:N ∼ FγN
(αNx + βN) (1)

for some αN > 0 and βN , γN ∈ R.

These distributions have some interesting properties, namely

F γN
(αNx + βN) = P [X1:N > x] =

[
F (x)

]N
(2)

and

αNfγN
(αNx + βN) = −

[[
F (x)

]N
]′

= Nf (x)
[
F (x)

]N−1
. (3)

The case γN = 1 corresponds to classical extreme values theory, because

only location-scale transforms are allowed. For γN �= 1, the non-linear shape

transformation leads to other types of models aside from GEV, as Generalized

Logistic [GL2 (λ, α)] with

F (x) = 1 −
[

exp
(−x

λ

)
1 + exp

(−x
λ

)
]α

for λ > 0 and α > 0, or Generalized Pareto [GP (λ, α)] with

F (x) = 1 −
[
1 +

x − 1

αλ

]−α

for x > 1 and 1 +
x − 1

αλ
> 0.
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3 Non-convex Mixtures for Distributions Closed

Under Minimization

Theorem 1.

Let F be a distribution function and f a density function. If w ∈ [−1, 1] ,

f∗ (x) = (1 − w) f (x) + 2wf (x) F (x) (4)

is always a density function.

This is a well known result and appears in a Gumbel (1958) work. Note

that if 2f (x) F (x) is a density function, than f ∗ is a mixture density. So, for

distributions fulfilling definition 1, non-convex mixtures can be introduced

as the next theorem states.

Theorem 2.

X∗ is a non-convex mixture with density

f∗ (x) = (1 + w) f (x) − wα2fγ2 (α2x + β2) , (5)

for w ∈ [−1, 1] and some α2, β2, γ2, if and only if X ∼ F (x) is a random

variable with distribution function closed under minimization, considering

N = 2.

Proof.

Equating expressions (4) and (5),

(1 + w) f (x) − wα2fγ2 (α2x + β2) = (1 − w) f (x) + 2wf (x) F (x)

[2w − 2wF (x)] f (x) = wα2fγ2 (α2x + β2)

2F (x) f (x) = α2fγ2 (α2x + β2) .
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integrating both sides,

− [
F (x)

]2
= Fγ2 (α2x + β2) + c[

F (x)
]2

= F γ2 (α2x + β2) + c′.

If c′ �= 0,

lim
x→+∞

F γ2 (α2x + β2) + c′ = c′ �= 0

and F cannot be a distribution function. For c′ = 0,

[
F (x)

]2
= F γ2 (α2x + β2)

and X is a distribution closed under minimization, considering N = 2.

The weight w defines the mixture type:

• if w < 0 we have a two densities sum, the first one contracted by 1+w

and the second one contracted by −w, where 0 < 1 + w < 1 and

0 < −w < 1 (usual convex mixture);

• if w > 0 we have a two densities subtraction, the first one expanded by

1 + w and the second one contracted by −w, where 1 < 1 + w < 2 and

0 < −w < 1 (non-convex mixture).

4 Moments and Mode

4.1 Mixture Moments

Assuming the existence of the involved k raw moments, consider the notation

μ′
X;k for the original distribution and μ′

X+;k for the minimum distribution.

Mixture moments will simply be

μ′
X∗;k = (1 + w) μ′

X;k − wμ′
X+;k. (6)
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We can now compare mixture moments with the original moments. Note

that

μ′
X∗;k > μ′

X;k ⇐⇒ (1 + w) μ′
X;k − wμ′

X+;k > μ′
X;k

⇐⇒ w
[
μ′

X;k − μ′
X+;k

]
> 0

For positive random variables, minimum moments will always be smaller

than distributions moments, so

w
[
μ′

X;k − μ′
X+;k

]
> 0 ⇐⇒ w > 0.

In this situation,

μ′
X∗;k > μ′

X;k

if w > 0 and

μ′
X∗;k < μ′

X;k

if w < 0.

4.2 Mode of the Mixtures

In the mixtures context, unimodality is always an important question. Com-

putation of the mode (and even establishing mode existence) can be a difficult

task, mainly because the involved density functions are complex. Besides,

data unimodality or multimodality may be originated by a sample fluctua-

tion. For the above defined non-convex mixtures, the mixture density func-

tion can be written as

f ∗ (x) = (1 − w) f (x) + 2wf (x) F (x) =

= f (x) [1 − w + 2wF (x)] = f (x)
[
1 + w − 2wF (x)

]
, (7)

leading to

f∗′ (x) = f ′ (x)
[
1 + w − 2wF (x)

]
+ 2w [f (x)]2 . (8)
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General conclusions cannot be taken, but besides the boundary of the do-

main, the mode candidates are the points where f ∗′ (x) = 0. This equation

leads to

f ∗′ (x) = 0 ⇐⇒ f ′ (x)
[
(1 + w) − 2wF (x)

]
+ 2w [f (x)]2 = 0 ⇐⇒

⇐⇒ [f (x)]2

f ′ (x)
= F (x) − 1 + w

2w
. (9)

According with f density, the above equation may lead to a explicit solution.

Otherwise, iterative methods must be applied.

5 Generating Random Numbers

For convex mixtures, random numbers generation is usually a simple task,

and in general commercial and user free software generate this kind of num-

bers for common distributions.

The situation is far more complicated for non-convex mixtures, since ne-

gative weights are allowed and usual software does not generate these num-

bers. Under these circumstances we show that the inverse transform method

works well, as the following theorem states.

Theorem 3.

Let X∗ be a non-convex mixture as introduced by theorem 2, X ∼ F (x) the

random variable with distribution function closed under minimization and

Y ∼ U (0, 1) . Then

X∗ d
= F

−1

⎡
⎣1 + w −

√
(1 − w)2 + 4wY

2w

⎤
⎦ . (10)
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Proof.

Since

F ∗ (x) =

x∫
−∞

[(1 + w) f (t) − wα2fγ2 (α2t + β2)] dt =

= (1 + w) F (x) − wFγ2 (α2x + β2) =

= (1 + w)
(
1 − F (x)

) − w
(
1 − F γ2 (α2x + β2)

)
=

= 1 + w − (1 + w) F (x) − w + w
[
F (x)

]2
= 1 − (1 + w) F (x) + w

[
F (x)

]2

then

y = 1 − (1 + w) F (x) + w
[
F (x)

]2 ⇐⇒
F (x)=t

1 − y − (1 + w) t + wt2 = 0 ⇐⇒

⇐⇒ t =
1 + w ±

√
(1 + w)2 − 4w (1 − y)

2w
=⇒

0≤F (x)≤1

=⇒ F (x) =
1 + w −

√
(1 + w)2 − 4w (1 − y)

2w
⇐⇒

⇐⇒ x = F
−1

⎡
⎣1 + w −

√
(1 − w)2 + 4wy

2w

⎤
⎦ .

6 Non-convex Exponential Mixtures

To exemplify the previous theory, let us consider X ∼ Exp (λ) . Mixture

density function will be

f ∗ (x) = (1 + w) λe−λx − 2wλe−2λx, (11)

and the corresponding X∗ raw moments

μ′
X∗;k = (1 + w)

k!

λk
− w

k!

(2λ)k
. (12)
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According to λ and w, different density shapes are possible, for instance

Figure 1: Some non-convex exponential mixtures densities

As far as the mode is considered, equation (9) originates the solution[
λe−λx

]2

−λ2e−λx
= e−λx − 1 + w

2w
⇐⇒ −e−λx = e−λx − 1 + w

2w
⇐⇒

⇐⇒ e−λx =
1 + w

4w
⇐⇒ w > 0 ∧ x = −1

λ
ln

(
1 + w

4w

)
. (13)

Noting that x > 0, then

−1

λ
ln

(
1 + w

4w

)
> 0 ⇐⇒ 1 + w

4w
< 1 ⇐⇒ w >

1

3
.

• When w < 0 we have an unimodal convex mixture with mode x = 0,

already studied in literature.

• When 0 < w ≤ 1
3

we have an unimodal non-convex mixture with mode

x = 0. Note that for 0 < w < 1
3

f∗′ (0+
)

=
[− (1 + w) λ2e−λx + 4wλ2e−2λx

]
x=0

=

= − (1 + w) λ2 + 4wλ2 = λ2 (3w − 1) <
w<1/3

0.

If w = 1/3,

f ∗′ (x) =
4

3
e−λx

[
e−λx − 1

]
< 0.
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• When w > 1
3

f ∗′ (0+
)

= λ2 (3w − 1) >
w>1/3

0,

implying that x = 0 is not a mode, so we have an unimodal non-convex

mixture with mode x = −1

λ
ln

(
1 + w

4w

)
.

Finally, for mixture concavities study, since

f ∗′ (x) = λ2e−λx
[− (1 + w) + 4we−λx

]
and

f∗′′ (x) = λ3e−λx
[
(1 + w) − 8we−λx

]
then [

f∗f ∗′′ − (f ∗′)2
]
(x) = −2w (1 + w) λ4e−3λx, (14)

implying that:

• for w < 0 expression (14) is always positive and so the mixture is

infinitely divisible;1

• for w > 0 expression (14) is always negative and so the mixture is

strongly unimodal (see Medgyessy, 1977).

7 Extensions

In the previous sections we have considered non-convex mixtures with two

components, one with density function f (x) and another with density func-

tion α2fγ2 (α2x + β2) . although these models might be interesting by them-

selves, they can be used to construct richer models, which is perhaps their

main interest.
1 Steutel (1967) had already showed infinite divisibility of all two exponential finite

mixtures.
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We can considerer a convex mixture of non-convex mixtures, leading to

a random variable with density function

f∗ (x) =
N∑

i=1

pi [(1 + wi) fi (x) − wiα2fi,γ2 (α2x + β2)] (15)

where −1 < wi < 1, 0 < pi < 1 and
N∑

i=1

pi = 1. This is a more complex model,

with modelling advantages, but also with the handicap of increased number

of parameters.

It is also possible to relax the condition N = 2, as long as f∗ is a density

function. This leads to a wider interval for w, but introduces a new parameter

(N) that we shall probably need to estimate.

Theorem 4.

Let X ∼ F (x) be a random variable with distribution function closed under

minimization. Then X∗ is a non-convex mixture with density function

f∗ (x) = (1 + w) f (x) − wαNfγN
(αNx + βN) , (16)

for w ∈ [−1, (N − 1)−1] , N > 1 and some αN , βN , γN .

Proof.

Density function f ∗ can be written as

f ∗ (x) = (1 + w) f (x) − wNf (x)
[
F (x)

]N−1
,

subject to the conditions
∫
R

f ∗ (x) dx = 1 and f ∗ (x) ≥ 0. The first condition

is universal,∫
R

f ∗ (x) dx =

∫
R

[
(1 + w) f (x) − wNf (x)

[
F (x)

]N−1
]
dx =

= (1 + w) − w = 1.
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For the second condition,

f∗ (x) ≥ 0 ⇐⇒ (1 + w) f (x) − wNf (x)
[
F (x)

]N−1 ≥ 0 ⇐⇒
⇐⇒ wf (x)

[
1 − N

[
F (x)

]N−1
]
≥ −f (x) ⇐⇒

⇐⇒ w
[
N

[
F (x)

]N−1 − 1
]
≤ 1.

When w > 0, the above inequality leads to the sufficient condition

w−1 ≥ N − 1 ≥
N>1

N
[
F (x)

]N−1 − 1 ⇐⇒
⇐⇒ w ≤ (N − 1)−1

and when w < 0

w−1 ≤ −1 ≤ N
[
F (x)

]N−1 − 1 ⇐⇒
⇐⇒ w ≥ −1,

originating the final solution

−1 ≤ w ≤ (N − 1)−1 .
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