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Abstract. In this paper, and in a context of regularly varying tails, we analyse
some variants of a maximum likelihood estimator of a positive tail index γ, under a
type II censoring scheme. These estimators are compared with the Hill estimator, for
a Fréchet model and by means of a Monte Carlo simulation. Asymptotic normality of
the estimators is derived, and a robustness study of the estimators is undertaken.
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1 The new semi-parametric estimators and scope of
the paper

Under a heavy tail framework, i.e., whenever we assume that the tail of the
model F (·), underlying the data, is a regularly varying function with index
−1/γ, γ > 0, the Pareto behaviour of the top scaled order statistics (o.s.),

Xn−i+1:n

Xn−k:n
, 1 ≤ i ≤ k,

leads us to a maximum likelihood estimator of γ given by

γ̂H
n (k) :=

1
k

k∑
i=1

[lnXn−i+1:n − lnXn−k:n] , (1)

which was introduced by Hill (1975). As usual, Xi:n denotes the i-th ascending
o.s., 1 ≤ i ≤ n, associated to the sample (X1, X2, · · · , Xn) of independent
random variables (r.v.’s) with common distribution function (d.f.) F (·). For
more details on the asymptotic theory of order statistics see Galambos (1987).

The Hill estimator is a consistent estimator of γ whenever k is intermediate
(Mason, 1982), i.e.,

k = kn →∞, kn/n → 0, as n →∞. (2)
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If we instead consider the Fréchet behaviour of X/a, and estimate jointly γ
and a through Maximum Likelihood (ML), under a type II censoring scheme,
where we have access to the top k + 1 o.s., Xk = (Xn−k:n ≤ Xn−k+1:n ≤ · · · ≤
Xn:n), we get an estimator γ̂n(k) such that

γ̂n(k) =
1

k + 1

k+1∑
i=1

lnXn−i+1:n−

−
∑k

i=1 X
−1/bγn(k)
n−i+1:n lnXn−i+1:n + (n− k)X−1/bγn(k)

n−k:n lnXn−k:n∑k
i=1 X

−1/bγn(k)
n−i+1:n + (n− k)X−1/bγn(k)

n−k:n

,

which may also be written as

γ̂n(k) =
k

k + 1
γ̂H

n (k)−
1
k

∑k
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγn(k)
ln

(
Xn−i+1:n

Xn−k:n

)
1
k

∑k
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγn(k)
+ n

k − 1
. (3)

In this paper, we have not worked with the estimator in (3), which is easy
to get iteratively for one sample, but leads to time-consuming large-scale simu-
lations. We have worked instead with an explicit estimator which is not a long
way from the estimator in (3), denoted by γ̂C

n (k), and given by the expression in
the second member of (3), but with γ̂n(k) replaced by the Hill estimator γ̂H

n (k)
i.e.,

γ̂C
n (k) :=

k

k + 1
γ̂H

n (k)−
1
k

∑k
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγH
n (k)

ln
(

Xn−i+1:n

Xn−k:n

)
1
k

∑k
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγH
n (k)

+ n
k − 1

. (4)

Indeed, the simulation results obtained for the maximum likelihood estimator
in (3), although computer time-consuming, reproduce the ones obtained for the
estimator in (4), whenever ρ ≥ −1. However, for a Fréchet model, the estimator
in (3) remains consistent till k = n− 1, and the MSE structure is then decreas-
ing with k, as shown in Figure 1. The performance of the estimator in (3), for
ρ < −1, is shown in Figure 5, to illustrate its behaviour in this region of ρ-values.

Also, since we may write, for intermediate sequences (as we shall see in detail
later on, in section 3 of this paper),

γ̂n(k) = γ̂H
n (k)− 1

k + 1
γ̂H

n (k)− k

n

1
k

∑k
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγn(k)
ln

(
Xn−i+1:n

Xn−k:n

)
1 + op(1)

,

we suggest the slightly easier explicit estimator

γ̂C1
n (k) := γ̂H

n (k)− 1
n

k∑
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγH
n (k)

ln
(

Xn−i+1:n

Xn−k:n

)
, (5)
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or alternatively, in between γ̂C
n (k) and γ̂C1

n (k), we may consider the estimator

γ̂C2
n (k) :=

k

k + 1
γ̂H

n (k)− 1
n

k∑
i=1

(
Xn−i+1:n

Xn−k:n

)−1/bγH
n (k)

ln
(

Xn−i+1:n

Xn−k:n

)
. (6)

Indeed they all appear to be able to reduce the asymptotic bias of the Hill
estimator for intermediate, but reasonably large values of k, not only for the
Fréchet model for which they were explicitly built, but also for other models,
as we shall see in the robustness study developed in section 4 of this paper.
Previously to such a robustness study we shall discuss in section 2 the finite
sample behaviour of the censoring estimators under investigation, for a Fréchet
model. The asymptotic behaviour of those estimators is studied in section 3.

2 Finite sample behaviour of the estimators for a
Fréchet model

We shall here obtain the finite sample properties of the above mentioned esti-
mators of the tail index, for the Fréchet model, F (x) = exp(−x−1/γ), x ≥ 0,
with γ = 1. The simulation results were based on a multi-sample simulation
of size 5000 × 10 in order to guarantee small standard errors for the simulated
characteristics, the Mean Value (E•), the Mean Squared Error (MSE•), the
Optimal Sample Fraction, OSF • ≡ k•o/n, with k•o := arg min

k
MSE•(k), and the

Relative Efficiency (REFF •), defined as

REFF • = REFF [γ̂(•)
n,o|γ̂H

n,o] =

√
MSE

[
γ̂H

n,o

]
MSE

[
γ̂•n,o

] , (7)

with γ̂•n,o = γ̂•n(k•o(n)), and where the index o indicates “optimality”. With
the index s indicating “simulation”, the simulator of for instance k•o(n),
denoted by k•o,s(n), is Ê10[k

•
o(n)], the average of 10 independent replicates of

k
•
o(n) = arg min

k

5000∑
j=1

(
γ̂•nj(k)− γ

)2
. 95% confidence intervals are presented in

the tables. They are meaningful only when the simulated characteristics are
asymptotically normal, which possibly does not happen to the optimal sample
fraction.

In Tables 1 and 2, we show some finite sample properties of γ̂H
n,o (reproduction

of results in Gomes and Oliveira, 2000), γ̂C
n,o, and γ̂

Cj
n,o, j = 1, 2, for a Fréchet

model. We do not place 95% confidence levels for the MSE’s whenever they are
0 up to 4 decimal figures.
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Table 1: Simulated mean values and mean squared errors of the estimators under study, at their
simulated optimal levels, and for a Fréchet parent.

n EH
s EC

s E
C1
s E

C2
s MSEH

s MSEC
s MSE

C1
s MSE

C2
s

100 1.1083 0.9524 1.0581 1.0403 0.0447 0.0130 0.0216 0.0187

±.0041 ±.0026 ±.0038 ±.0032 ±.0007 ±.0002 ±.0002 ±.0002

200 1.0850 0.9684 1.0449 1.0354 0.0265 0.0069 0.0119 0.0108

±.0038 ±.0014 ±.0026 ±.0017 ±.0005 ±.0001 ±.0002 ±.0002

500 1.0632 0.9796 1.0316 1.0270 0.0136 0.0030 0.0056 0.0053

±.0025 ±.0009 ±.0018 ±.0021 ±.0002

1000 1.0489 0.9863 1.0239 1.0226 0.0083 0.0016 0.0032 0.0031

±.0019 ±.0010 ±.0021 ±.0012 ±.0001

2000 1.0381 0.9908 1.0184 1.0171 0.0051 0.0009 0.0018 0.0018

±.0013 ±.0005 ±.0007 ±.0009

5000 1.0295 0.9945 1.0128 1.0123 0.0027 0.0004 0.0009 0.0009

±.0010 ±.0003 ±.0007 ±.0006

10000 1.0232 0.9966 1.0100 1.0098 0.0017 0.0002 0.0005 0.0005

±.0008 ±.0002 ±.0005 ±.0006

20000 1.0184 0.9978 1.0077 1.0076 0.0011 0.0001 0.0003 0.0003

±.0007 ±.0001 ±.0002 ±.0004

Table 2: Simulated relative efficiencies and optimal sample fractions of the estimators under study,
at their simulated optimal levels, for a Fréchet parent.

n REFF C
s REFF

C1
s REFF

C2
s kH

o,s/n kC
o,s/n k

C1
o,s/n k

C2
o,s/n

100 1.8547 1.4403 1.5444 0.3370 0.7440 0.5440 0.5570

±.0134 ±.0102 ±.0110 ±.0101 ±.0118 ±.0140 ±.0101

200 1.9572 1.4917 1.5693 0.2815 0.7010 0.4935 0.5030

±.0183 ±.0097 ±.0107 ±.0089 ±.0087 ±.0101 ±.0059

500 2.1136 1.5553 1.6070 0.2208 0.6588 0.4260 0.4298

±.0168 ±.0125 ±.0135 ±.0079 ±.0068 ±.0100 ±.0106

1000 2.2694 1.6095 1.6491 0.1762 0.6199 0.3725 0.3836

±.0126 ±.0063 ±.0074 ±.0057 ±.0102 ±.0120 ±.0090

2000 2.4411 1.6638 1.6936 0.1418 0.5855 0.3281 0.3313

±.0186 ±.0131 ±.0134 ±.0038 ±.0076 ±.0068 ±.0074

5000 2.7262 1.7545 1.7757 0.1110 0.5474 0.2718 0.2745

±.0253 ±.0092 ±.0096 ±.0032 ±.0057 ±.0054 ±.0047

10000 2.9745 1.8197 1.8362 0.0880 0.5171 0.2396 0.2421

±.0386 ±.0159 ±.0163 ±.0023 ±.0058 ±.0057 ±.0049

20000 3.3127 1.9032 1.9163 0.0706 0.4974 0.2085 0.2102

±.0439 ±.0134 ±.0136 ±.0024 ±.0045 ±.0048 ±.0051

In Figure 1 we present the simulated mean values and MSE’s of γ̂H
n (k),

γ̂C
n (k) and γ̂

Cj
n (k), j = 1, 2, for a sample size n = 1000 and for an underlying

Fréchet parent with γ = 1. We present also the same results for the maximum
likelihood censoring estimator γ̂n(k) in (3), which exhibits no bias.

A few general remarks:

1. The estimator γ̂C
n (k) reduces more drastically than expected the bias of the

Hill estimator, for large values of k; at the optimal level, which is attained
for large k, provides high efficiencies relatively to the Hill estimator, not
only for the Fréchet model, but also for other simulated models, as shown
in section 4.

2. The simplified estimators γ̂C1
n (k) and γ̂C2

n (k), although with a smaller rela-
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Figure 1: Simulated mean values (left) and MSE’s (right) of γ̂H
n (k), γ̂C

n (k), γ̂
Cj
n (k),

j = 1, 2, and the maximum likelihood censoring estimator γ̂n(k) in (3), based on 5000
runs, for a sample size n = 1000 from a Fréchet parent with γ = 1.

tive efficiency than γ̂C
n (k) at their optimal levels, provide mean squared

errors, MSE[γ̂Cj
n (k)], j = 1, 2, with an interesting bath-tube pattern,

reasonably flat for a wide range of k-values, making less relevant the choice
of the threshold.

3. The mean squared error of any of the censoring estimators is smaller than
that of the Hill estimator at its optimal level, for a wide region of k-values.

3 The asymptotic normality of the estimators

As may be easily noticed from the explicit expressions of the estimators in (4),
(5) and (6), their dominant component is always the Hill estimator, γ̂H

n (k),
in (1), with a remaining term converging to 0 in probability. Apart from
that main component, we have the r.v.’s 1

k

∑k
i=1 (Xn−i+1:n/Xn−k:n)−1/γ , and

1
k

∑k
i=1 (Xn−i+1:n/Xn−k:n)−1/γ ln (Xn−i+1:nXn−k:n), to be studied here.

The study of these r.v.’s may be done in the lines of de Haan and Peng’s
(1998) derivation of asymptotic normality of the Hill estimator, under the second
order framework, usual in Extreme Value Theory due to the large variety of
models for which such a framework holds. Here, with U(t) := F←(1 − 1/t),
t ≥ 1, F (·) the underlying model and F←(·) the generalized inverse function of
F , we shall also assume that there exists a function A(t) of constant sign, going
to 0 as t →∞, such that

lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

xρ − 1
ρ

, (8)

for every x > 0, where ρ (≤ 0) is a second order parameter. The limit function
in (8) must be of the stated form, and |A(t)| ∈ RVρ (Geluk and de Haan, 1987).
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We may then write, under the validity of (2) and (8),

ln
(

Xn−i+1:n

Xn−k:n

)
= ln

(
U(Yn−i+1:n)
U(Yn−k:n)

)
= γ lnYk−i+1:k + A(n/k)

Y ρ
k−i+1:k − 1

ρ
(1 + op(1)),

where Yk−i+1:k, 1 ≤ i ≤ k are the o.s.’s associated to a standard Pareto(1)
random sample of size k, with d.f FY (y) = 1 − 1/y, y ≥ 1. Then, since
E

[
Y ρ−1

ρ

]
= 1

1−ρ , we have for intermediate k, i.e., k such that (2) holds, the
following distributional representation for the Hill estimator,

γ̂H
n (k) = γ +

γ√
k
ZH

n +
1

1− ρ
A(n/k)(1 + op(1)), (9)

where ZH
n is an asymptotically standard normal r.v. Then, provided√

kA(n/k) → λ, finite, the Hill estimator is asymptotically normal. More
precisely,

√
k

(
γ̂H

n (k)− γ
)

is asymptotically normal with a possibly non-null
asymptotic bias, λ/(1− ρ), and an asymptotic variance equal to γ2.

Similarly, and with Ui, 1 ≤ i ≤ k, denoting i.i.d. standard uniform r.v.’s,
and Pn and Qn asymptotically standard normal r.v.’s,

1
k

k∑
i=1

Y −1
k−i+1:k =

1
k

k∑
i=1

Ui =
1
2

+
1√
12k

Pn(1 + op(1)),

and

1
k

k∑
i=1

Y −1
k−i+1:k lnYk−i+1:k = −1

k

k∑
i=1

Ui lnUi =
1
4

+
1
12

√
5
3k

Qn(1 + op(1)).

Also, E
[
Y −1 Y ρ−1

ρ

]
= 1

2(2−ρ) and E
[
Y −1 Y ρ−1

ρ (1− lnY )
]

= − ρ
4(2−ρ)2

.

We thus get, for intermediate k,

Φ(γ) = Φ(γ, Xk) ≡
1
k

k∑
i=1

(
Xn−i+1:n

Xn−k:n

)−1/γ

d=
1
2

+
1√
12k

Pn −
1

2γ(2− ρ)
A(n/k)(1 + op(1)), (10)

and

Ψ(γ) = Ψ(γ, Xk) ≡
1
k

k∑
i=1

(
Xn−i+1:n

Xn−k:n

)−1/γ

ln
(

Xn−i+1:n

Xn−k:n

)
d=

γ

4
+

γ

12

√
5
3k

Qn −
ρ

4γ(2− ρ)2
A(n/k)(1 + op(1)). (11)
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It thus follows that we have for the estimators under study the same type
of asymptotically normal behaviour of the Hill estimator, eventually with a
non-null asymptotic bias, but the value of that asymptotic bias is going to be
slightly different from that of the Hill estimator. Noticing that, for intermediate
k, Φ(γ̂H

n (k)) = Φ(γ) + Op(1/
√

k) and Ψ(γ̂H
n (k)) = Ψ(γ) + Op(1/

√
k) converge

in probability towards 1/2 and γ/4, respectively, as n →∞, the second term in
either (4) or (5) or (6) is of the order of k/n, and the distributional representation

γ̂•n(k) = γ +
(

γ√
k
ZH

n − γ

4
k

n
+

1
1− ρ

A(n/k)
)

(1 + op(1)) (12)

holds for any of the estimators in (4), (5) and (6), here denoted by γ̂•n(k).

If we take into account only the dominant component of asymptotic bias, we
have for every fixed n and k an asymptotic approximation for the mean squared
error of any of the censoring estimators γ̂•n(k) given by

AMSE•ρ(n, k) =


γ2

k + γ2

16

(
k
n

)2
if ρ < −1

γ2

k +
(

1
1−ρA(n/k)− γ

4
k
n

)2
if ρ = −1

γ2

k +
(

1
1−ρA(n/k)

)2
if ρ > −1

Notice however that the approximation given for ρ = −1 is more accurate
than any of the other two, for any value of ρ. Indeed, had we decided to go
into a higher order development of ln U(t), would we get better and better
approximations. For results related to the role of the third order behaviour in
Statistics of Extremes see for instance Gomes and de Haan (1999).

A few additional remarks:

4. Whenever ρ < −1 , the dominant term of the asymptotic bias is thus
negative, and given by −γ

4
k
n (a term of the order of k/n dominates then

A(n/k), which is of the order of (k/n)−ρ). Asymptotically, the estimator
is then worse than the Hill estimator.

5. If ρ = −1, A(n/k) = O(k/n), and we have a dominant term of asymptotic
bias equal to

{
1

1−ρA(n/k)− γ
4

k
n

}
; then we are for sure going to have a

decreasing in bias relatively to the Hill estimator, possibly in a wrong
direction if the function A(·) is a negative function; but we may even have
for very specific models, like for instance the Fréchet model where ρ = −1
and A(t) may be chosen equal to γ/(2t), a null dominant component for
the asymptotic bias.

6. If ρ > −1, the dominant component of asymptotic bias is equal to the one
we get for the Hill estimator, 1

1−ρA(n/k).
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We picture here as an illustration of the behaviour of the three branches of
AMSE•ρ(n, k), now expressed in terms of the sample fraction s = k/n, and for
n = 1000 and n = 5000, the three functions ϕ1(s)/γ2 = 1

ns + s2

16 , ϕ2(s)/γ2 =
1
ns +

(
s−ρ

1−ρ −
s
4

)2
, and ϕ3(s)/γ2 = 1

ns +
(

s−ρ

1−ρ

)2
, for 0 < s < 1, ρ = −2. The

function A was here chosen equal to A(t) = γ tρ, and is the second order function
associated to a Burr model, F (x) = 1− (1 + x−ρ/γ)1/ρ, x ≥ 0, γ > 0, ρ < 0.
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Figure 2: Asymptotic mean squared error patterns of the estimators under study, for
a Burr parent with ρ = −2.

4 Robustness of the estimators — a simulation study

Figures 3, 4 and 5 are analogue to Figure 1, and also based on 5000 runs, but
for Burr models, with ρ = −0.5,−1 and −2, respectively.
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Figure 3: Simulated mean values (left) and MSE’s (right) of γ̂H
n (k), γ̂C

n (k) and γ̂
Cj
n (k),

j = 1, 2, based on 5000 runs, for a sample size n = 1000, from a Burr parent with γ = 1
and ρ = −.5.
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Figure 4: Simulated mean values (left) and MSE’s (right) of γ̂H
n (k), γ̂C

n (k) and γ̂
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j = 1, 2, based on 5000 runs, for a sample size n = 1000, from a Burr parent with γ = 1
and ρ = −1.
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Figure 5: Simulated mean values (left) and MSE’s (right) of γ̂H
n (k), γ̂C

n (k), γ̂
Cj
n (k),

j = 1, 2, and γ̂n(k), based on 5000 runs, for a sample size n = 1000, from a Burr parent
with γ = 1 and ρ = −2.

Only for ρ = −2 do we picture the behaviour of the estimator in (3), which
is then quite different from that of γ̂C

n (k), contrarily to what happens for models
with ρ ≥ −1, different from the Fréchet model. Notice that the exact behaviour
of the estimators, which are asymptotically similar, is quite diversified. Indeed,
the rate of convergence of any of the estimators under study is of the order of
1/
√

k, and for not too large k (and n), the exact behaviour of the estimators
may be a long way from the asymptotic one. Notice however the similarities
between the MSE of γ̂n(k) in Figure 5, and the asymptotic behaviour pictured
in Figure 2.

We next present simulation results, based again on 10 replicates of 5000
runs each, to evaluate the robustness of the estimators at their optimal levels,
i.e., the estimators γ̂C

n,o = γ̂C
n (kC

o (n)), and γ̂
(Cj)
n,o = γ̂

Cj
n (kCj

o (n)), j = 1, 2. The
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measure of comparison is the relative efficiency explicited in (7). In Table 3
we present these relative efficiencies for different models with a second order
parameter ρ = −1, different from the Fréchet: the Student-t with ν = 2 degrees
of freedom, a Burr model, with γ = −ρ = 1, a model, denoted Out-Hall, also
considered in Drees and Kaufmann (1998), with a quantile function F←(1 −
t) = t−1e−2t(ln t−1), for all 0 < t ≤ 1, which does not belong to Hall’s class
(Hall and Welsh (1985)), and finally two models, also considered by Gomes et
al. (2000), one denoted Sin-Fréchet, with a quantile function F←(1 − t) =(
− 1

sin(1/t) ln(1− t sin(1/t))
)−1

, 0 < t ≤ 1, close to the Fréchet parent with
γ = 1, and another related to the Burr model, denoted Sin-Burr, with a quantile
function F←(1 − t) = (tρ − sin(tρ))−γ/ρ, 0 < t ≤ 1. For these two models the
second order condition (8) no longer holds.

Table 3: Simulated efficiencies of bγ•n,o relatively to bγH
n,o for models with ρ = −1.

n 100 200 500 1000 2000 5000 10000 20000

Burr parent: ρ = −1, γ = 1

C 1.3903 1.3538 1.3191 1.3025 1.2914 1.2784 1.2716 1.2660

±.0132 ±.0105 ±.0064 ±.0087 ±.0073 ±.0039 ±.0049 ±.0091

C1 1.1939 1.2066 1.2110 1.2192 1.2268 1.2315 1.2343 1.2361

±.0091 ±.0068 ±.0049 ±.0088 ±.0070 ±.0027 ±.0041 ±.0090

C2 1.3295 1.3057 1.2784 1.2706 1.2662 1.2595 1.2558 1.2529

±.0115 ±.0080 ±.0047 ±.0094 ±.0072 ±.0028 ±.0042 ±.0092

Student (ν = 2) parent: ρ = −1, γ = .5

C 1.2784 1.2164 1.1650 1.1379 1.1221 1.1004 1.0912 1.0833

±.0061 ±.0060 ±.0036 ±.0036 ±.0024 ±.0020 ±.0026 ±.0023

C1 1.0561 1.0565 1.0584 1.0584 1.0615 1.0582 1.0588 1.0582

±.0035 ±.0041 ±.0026 ±.0029 ±.0019 ±.0017 ±.0025 ±.0020

C2 1.2743 1.2129 1.1624 1.1357 1.1204 1.0991 1.0902 1.0825

±.0056 ±.0057 ±.0035 ±.0035 ±.0024 ±.0019 ±.0026 ±.0023

Out-Hall parent: ρ = −1, γ = 1

C 0.7675 0.7981 0.8433 0.8708 0.8944 0.9176 0.9321 0.9421

±.0044 ±.0037 ±.0015 ±.0022 ±.0010 ±.0012 ±.0009 ±.0014

C1 0.4397 0.7620 0.8927 0.9249 0.9446 0.9590 0.9678 0.9719

±.0057 ±.0263 ±.0033 ±.0029 ±.0012 ±.0011 ±.0008 ±.0017

C2 0.4364 0.7152 0.8328 0.8682 0.8938 0.9176 0.9322 0.9422

±.0040 ±.0221 ±.0027 ±.0025 ±.0010 ±.0012 ±.0009 ±.0015

Sin-Fréchet parent: γ = 1

C 1.9223 1.9126 1.9196 1.9161 1.9238 1.9252 1.9260 1.9283

±.0303 ±.0250 ±.0265 ±.0206 ±.0162 ±.0147 ±.0181 ±.0125

C1 1.1639 1.1571 1.1555 1.1519 1.1522 1.1529 1.1529 1.1530

±.0056 ±.0035 ±.0068 ±.0083 ±.0095 ±.0066 ±.0071 ±.0055

C2 1.2346 1.1945 1.1706 1.1594 1.1562 1.1543 1.1539 1.1534

±.0081 ±.0053 ±.0071 ±.0080 ±.0096 ±.0068 ±.0072 ±.0056

Sin-Burr parent: ρ = −1, γ = 1

C 1.0975 1.0753 1.0728 1.0663 1.0681 1.0659 1.0641 1.0657

±.0078 ±.0035 ±.0057 ±.0053 ±.0078 ±.0046 ±.0052 ±.0039

C1 1.0265 1.0288 1.0407 1.0398 1.0463 1.0455 1.0436 1.0451

±.0056 ±.0044 ±.0052 ±.0051 ±.0073 ±.0045 ±.0054 ±.0035

C2 1.0688 1.0510 1.0501 1.0438 1.0487 1.0465 1.0441 1.0452

±.0059 ±.0033 ±.0049 ±.0051 ±.0070 ±.0045 ±.0054 ±.0036

Apart the Out-Hall model, where γ̂C1
n,o overpasses γ̂C

n,o for n ≥ 500, the
highest efficiency is always attained by γ̂C

n,o, as expected, but not a long way
from the other estimators. In Table 4 we present similar results for Burr,
Student and Sin-Burr models, but now with values of ρ > −1, more specifically,
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for ρ = −0.25 and − 0.5.

Table 4: Simulated efficiencies of bγ•n,o relatively to bγH
n,o for models with ρ = −0.25 and − 0.5

n 100 200 500 1000 2000 5000 10000 20000

Burr parent: ρ = 0.25, γ = 1

C 1.5011 1.3832 1.2815 1.2245 1.1859 1.1410 1.1205 1.0978

±.0098 ±.0093 ±.0076 ±.0065 ±.0068 ±.0043 ±.0032 ±.0023

C1 0.6906 1.0152 1.0113 1.0085 1.0067 1.0047 1.0035 1.0027

±.3408 ±.0010 ±.0009 ±.0005 ±.0002 ±.0003 ±.0003 ±.0003

C2 0.9715 1.3768 1.2795 1.2241 1.1859 1.1410 1.1205 1.0978

±.4899 ±.0075 ±.0086 ±.0067 ±.0068 ±.0042 ±.0032 ±.0023

Student (ν = 8) parent: ρ = −0.25, γ = 0.125

C 1.5201 1.4363 1.3277 1.2408 1.1895 1.1343 1.1153 1.0932

±.0508 ±.0210 ±.0046 ±.0099 ±.0056 ±.0054 ±.0074 ±.0054

C1 0.9138 0.9422 0.9559 0.9581 0.9751 0.9709 0.9823 0.9819

±.0213 ±.0169 ±.0109 ±.0215 ±.0069 ±.0061 ±.0083 ±.0043

C2 1.1929 1.1904 1.1501 1.1229 1.1328 1.0902 1.0938 1.0771

±.0503 ±.0436 ±.0220 ±.0416 ±.0161 ±.0127 ±.0147 ±.0076

Sin-Burr parent: ρ = −0.25, γ = 1

C 1.5784 1.4683 1.3102 1.1859 1.0878 1.0347 1.0184 1.0084

±.0354 ±.0711 ±.0343 ±.0139 ±.0087 ±.0065 ±.0024 ±.0016

C1 0.9582 0.9056 0.8287 0.8642 0.8832 0.9638 0.9877 0.9947

±.2247 ±.0155 ±.0169 ±.0410 ±.0463 ±.0202 ±.0015 ±.0010

C2 1.3220 1.2733 1.1043 1.0903 1.0358 1.0286 1.0181 1.0084

±.3204 ±.0436 ±.0381 ±.0548 ±.0508 ±.0137 ±.0025 ±.0016

Burr parent: ρ = 0.5, γ = 1

C 1.3071 1.2405 1.1765 1.1426 1.1170 1.0895 1.0738 1.0609

±.0031 ±.0027 ±.0017 ±.0010 ±.0007 ±.0007 ±.0009 ±.0007

C1 1.0597 1.0521 1.0454 1.0389 1.0357 1.0289 1.0235 1.0197

±.0029 ±.0029 ±.0016 ±.0020 ±.0019 ±.0013 ±.0014 ±.0009

C2 1.3027 1.2379 1.1751 1.1418 1.1164 1.0892 1.0737 1.0608

±.0027 ±.0026 ±.0016 ±.0009 ±.0006 ±.0007 ±.0008 ±.0006

Student (ν = 4) parent: ρ = −0.5, γ = 0.25

C 1.4178 1.3107 1.2205 1.1733 1.1375 1.1033 1.0836 1.0683

±.0053 ±.0040 ±.0034 ±.0019 ±.0021 ±.0017 ±.0011 ±.0010

C1 0.9981 1.0170 1.0157 1.0151 1.0136 1.0122 1.0110 1.0092

±.0134 ±.0026 ±.0017 ±.0017 ±.0008 ±.0010 ±.0008 ±.0003

C2 1.3315 1.2995 1.2188 1.1726 1.1372 1.1032 1.0836 1.0683

±.0387 ±.0087 ±.0030 ±.0018 ±.0020 ±.0017 ±.0011 ±.0010

Sin-Burr parent: ρ = −0.5, γ = 1

C 1.1044 1.0442 1.0256 1.0165 1.0120 1.0100 1.0097 1.0106

±.0044 ±.0081 ±.0049 ±.0028 ±.0020 ±.0019 ±.0025 ±.0020

C1 0.8189 0.9103 0.9904 0.9994 1.0030 1.0061 1.0076 1.0090

±.0355 ±.0227 ±.0045 ±.0023 ±.0022 ±.0024 ±.0024 ±.0022

C2 0.9787 1.0075 1.0236 1.0157 1.0115 1.0093 1.0092 1.0100

±.0477 ±.0213 ±.0049 ±.0028 ±.0020 ±.0021 ±.0025 ±.0020

Table 5 is the equivelent of Table 4, but for Burr and Student models with
ρ = −2. Here, and for the Burr parent, both γ̂C1

n,o and γ̂C2
n,o behave better than

γ̂C
n,o.
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Table 5: Simulated efficiencies of bγ•n,o relatively to bγH
n,o for models with ρ = −2.

n 100 200 500 1000 2000 5000 10000 20000

Burr parent: ρ = −2, γ = 1

C 1.2710 1.1375 0.9161 0.8129 0.7569 0.7018 0.6636 0.6294

±.0184 ±.0146 ±.0091 ±.0070 ±.0038 ±.0083 ±.0031 ±.0046

C1 1.4163 1.4777 1.5952 1.6905 1.8077 1.9642 2.1054 2.2572

±.0155 ±.0106 ±.0146 ±.0156 ±.0157 ±.0134 ±.0130 ±.0227

C2 1.4604 1.5061 1.6096 1.6983 1.8126 1.9663 2.1062 2.2579

±.0156 ±.0116 ±.0145 ±.0154 ±.0154 ±.0134 ±.0129 ±.0226

Student (ν = 1) parent: ρ = −2, γ = 1

C 1.2529 1.2427 1.2522 1.2788 1.2985 1.3521 1.4017 1.4652

±.0078 ±.0060 ±.0087 ±.0066 ±.0074 ±.0073 ±.0133 ±.0084

C1 1.1200 1.1418 1.1781 1.2194 1.2455 1.3066 1.3565 1.4215

±.0044 ±.0047 ±.0058 ±.0051 ±.0065 ±.0073 ±.0102 ±.0064

C2 1.2348 1.2222 1.2289 1.2547 1.2706 1.3215 1.3672 1.4284

±.0075 ±.0055 ±.0071 ±.0058 ±.0067 ±.0074 ±.0108 ±.0064

A few additional and final remarks:

7. The estimators seem to be appropriate to reduce bias whenever ρ = −1.

8. For values of ρ > −1, here illustrated with ρ = −0.25 and ρ = −0.5,
and just like the developed theory suggests, the reduction in bias is not so
significant. Even so, there is a slight decrease in mean squared error.

9. For values of ρ < −1, here illustrated with ρ = −2, it is not possible from
the theoretical results in section 3 to predict what is really going to happen
in practice. There is for sure a high reduction in bias, which may be in
a wrong direction, increasing the mean squared error of the estimators.
However, and as it is illustrated in Table 5 for Burr and Student models,
apart from γC

n,o in a Burr model, these estimators are highly efficient in
this region of ρ-values, a region where has been difficult to find competitors
to the Hill estimator. This is mainly due to a second local minumum of
the mean squared error pattern, which is the global minimum. For values
of n ≤ 1000 it is possible to detect only a unique minimum (see Figures
2 (left) and 5). However, even for n = 1000, the mean squared error of
γ̂n(k) has already two local minima (see again Figure 5).

10. The results obtained for Sin-Fréchet and Sin-Burr parents, models for
which the second order condition (8) no longer holds, give us some hope
that the developed estimators are robust against a non-second order frame-
work, and this is an interesting result, since to date there is no statisti-
cal procedure to assess the validity of second order regular variation sub-
models. Anyway, the Mean values’ and MSE’s patterns of the estimators
(not shown here) are, like for Hill’s estimator, still sinusoidal, with several
humps and bumps.

11. Only for models outside Hall’s class, not shown here graphically
as well, i.e., models whose tail is not of the type 1 − F (x) =
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Ax−1/γ
(
1 + Bxρ/γ(1 + o(1))

)
, do the estimators not behave better than

the Hill estimator, due to a decreasing in bias, which was already negative
for the Hill estimator and for the models simulated.
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