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Abstract. In this paper we are interested in the derivation of the asymptotic

distributional properties of a weighted log-excesses’ estimator of a positive tail index γ.

One of the main objectives of such an estimator is the accomodation of the dominant

component of asymptotic bias, together with the maintenance of the asymptotic

variance of the maximum likelihood estimator of γ, under a strict Pareto model.

We shall here consider the external estimation not only of a “shape” second order

parameter ρ, but also of a “scale” second order parameter β, being then able to decrease

the asymptotic variance of the final estimators under investigation, comparatively to

the one of the “asymptotically unbiased” estimators already available in the literature.

The “asymptotically unbiased” estimators herewith considered will also be studied for

finite samples, through Monte Carlo techniques, as well as applied to real data in the
∗Research partially supported by FCT / POCTI / FEDER.
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field of finance.
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1 Introduction and motivation for the new class of

estimators

Heavy-tailed models appear often in practice in fields like telecommunication

traffic, insurance and finance. A model F is said to be heavy-tailed whenever

the tail function, 1− F , is a regularly varying function with a negative index of

regular variation α = −1/γ, i.e., for every x > 0,

lim
t→∞

1 − F (tx)
1 − F (t)

= x−1/γ .

Then we are in the domain of attraction for maxima of an Extreme Value dis-

tribution function (d.f.),

EVγ(x) = exp(−(1 + γx)−1/γ), 1 + γx ≥ 0, γ > 0,

and we write F ∈ DM(EVγ). The parameter γ is the tail index, one of the

primary parameters of extreme or even rare events.

In a context of heavy tails, and with the notation U(t) = F←(1−1/t), t ≥ 1,

F←(y) = inf{x : F (x) ≥ y} the generalized inverse function of the underlying

model F , the first order parameter (or tail index) γ may also appear, for every

x > 0, as the limiting value

γ = lim
t→∞

lnU(tx) − lnU(t)
lnx

,

i.e., with the usual notation RVα for the class of regularly varying functions with

index of regularly variation α,

F ∈ DM(EVγ) (γ > 0) iff 1 − F ∈ RV−1/γ iff U ∈ RVγ . (1.1)
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The second order parameter ρ (≤ 0) is the non-positive value which appears

in the limiting relation

lim
t→∞

lnU(tx) − lnU(t) − γ lnx

A(t)
=

xρ − 1
ρ

, (1.2)

which we assume to hold for every x > 0, and where |A(t)| is then of regular

variation with index ρ (Geluk and de Haan, 1987).

For intermediate k, i.e., a sequence of integers k = kn between 1 and n such

that

k = kn → ∞, kn = o(n), as n → ∞, (1.3)

let us consider the log-excesses,

V
ik

:= lnXn−i+1:n − lnXn−k:n, 1 ≤ i ≤ k < n, (1.4)

where Xi:n denotes, as usual, the i-th ascending order statistic (o.s.), 1 ≤ i ≤ n,

associated to a random sample (X1, X2, · · · , Xn).

From the definition of the function U and from the fact that, denoting R a

uniform random variable (r.v.), F←(R) is a r.v. with d.f. F , we get the represen-

tation Xi:n
d= U(Yi:n) where Y is a unit Pareto r.v., i.e., FY (y) = 1 − y−1, y ≥ 1.

Indeed, 1 − 1/Y
d= R. Since for j > i, Yj:n/Yi:n

d= Yj−i:n−i, lnYi:n
d= Ei:n,

where {Ei} denotes a sequence of independent, standard exponential r.v.’s and

Yn−k:n ∼ n/k, as n → ∞, we may indeed write, whenever we are under the first

order framework in (1.1),

V
ik

d= lnU(Yn−i+1:n) − lnU(Yn−k:n) ∼ γ lnYk−i+1:k
d= γ Ek−i+1:k,

i.e., the V
ik

’s, 1 ≤ i ≤ k, are, approximately, the k o.s.’s from an exponential

random sample with mean value γ. This argument justifies the well-known Hill
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estimator (Hill, 1975):

H(k) :=
1
k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n} ≡ 1
k

k∑
i=1

V
ik

. (1.5)

More specifically, under the second order framework in (1.2), we may say that

for intermediate k, i.e., whenever (1.3) holds true,

V
ik

d= γ lnYk−i+1:k +
Y ρ

k−i+1:k − 1
ρ

A(n/k) (1 + op(1)), (1.6)

where the op(1) term is uniform in i, 1 ≤ i ≤ k.

Let us write now

V
ik

= γ lnYk−i+1:k

(
1 +

A(n/k)
γ

Y ρ
k−i+1:k − 1

ρ lnYk−i+1:k
(1 + op(1))

)

= γ e
A(n/k)

γ

Y
ρ
k−i+1:k

−1

ρ ln Yk−i+1:k Ek−i+1:k + op (A(n/k)) .

It thus follows that

V
ik
− γ e

A(n/k)
γ

Y
ρ
k−i+1:k

−1

ρ ln Yk−i+1:k Ek−i+1:k = op (V
ik
− γ Ek−i+1:k) . (1.7)

Note also that, for 1 ≤ i ≤ k,

Y ρ
k−i+1:k − 1

ρ lnYk−i+1:k
≈ −(i/k)−ρ − 1

ρ ln(i/k)
=: ψ

ik
≡ ψ(i/k) ≡ ψ

ik
(ρ) [ψkk ≡ 1], (1.8)

with ψ a limited function (see Lemma 5.1).

The validity of (1.7), together with the approximation in (1.8), lead us to

expect to be able to get a less biased estimator of the tail index γ if we assume

that the random log-excess V
ik

, in (1.4), comes from an exponential model with

mean value not equal to γ, as it is done to support the estimator in (1.5), but

dependent on i (and k), and more specifically given by

γ
ik

= γ eA(n/k) ψ
ik

/γ , 1 ≤ i ≤ k.
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We shall herewith restrict ourselves to the case ρ < 0. We shall thus assume

that we are in Hall’s class of models (Hall, 1982; Hall and Welsh, 1985), with a

tail function

1 − F (x) =
( x

C

)−1/γ
(

1 +
β

ρ

( x

C

)ρ/γ
+ o

(
xρ/γ

))
, as x → ∞,

with C > 0, β 
= 0, ρ < 0. We may then choose A(t) = γ β tρ, dependent on

the tail index γ, the “scale” second order parameter β and the “shape” second

order parameter ρ.

Since we may write the approximation,

V
ik

≈ γeβ (n/k)ρ ψ
ik Ek−i+1:k, ψ

ik
= −(i/k)−ρ − 1

ρ ln(i/k)
, 1 ≤ i ≤ k,

the likelihood associated to the k log-excesses, V
ik

, 1 ≤ i ≤ k, is proportional to

L∗(γ, β, ρ) = exp

(
−k ln γ − β

(n

k

)ρ
k∑

i=1

ψik − 1
γ

k∑
i=1

V
ik

e−β (n/k)ρ ψik

)
. (1.9)

Should we know β and ρ, the maximization of L∗ would lead us to

γ̂ = WLEβ, ρ(k) =
1
k

k∑
i=1

e−β (n/k)ρ ψik V
ik

=: A
(0)
k .

More generally, and for j ≥ 0, we shall denote

A
(j)
k :=

1
k

k∑
i=1

ψj
ike

−β (n/k)ρ ψik V
ik

(1.10)

d=
1
k

k∑
i=1

ψj
ik V

ik
− β

(n

k

)ρ
(

1
k

k∑
i=1

ψj+1
ik V

ik

)
(1 + op(1))

=: B
(j)
k − β

(n

k

)ρ
B

(j+1)
k (1 + op(1)), (1.11)

where the op(1)-terms are also uniform in i, 1 ≤ i ≤ k.

It seems thus sensible to replace Hill’s estimator in (1.5) by a weighted com-

bination of the log-excesses, i.e., by

WLE
β̂, ρ̂

(k) :=
1
k

k∑
i=1

e−β̂ (n/k)ρ̂ ψ̂
ik ln

(
Xn−i+1:n

Xn−k:n

)
, (1.12)
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where with WLE we denote a Weighted Log-Excesses’ estimator, being β̂ and ρ̂

any consistent estimators of the second order parameters β and ρ, respectively.

We use the obvious notation ψ̂
ik

= −
(
(i/k)−ρ̂ − 1

)
/ (ρ̂ ln(i/k)) , 1 ≤ i ≤ k.

Remark 1.1. The class of estimators in (1.12), although a linear combination

of log-excesses, is not in the class of kernel’s estimators of Csörgő et al. (1985),

because the weights of the log-excesses are not functions of i and k through the

quotient {i/k}. It does not also belong to the more general class of Drees (1998),

now because the weights are dependent on the second order parameters’ estima-

tors β̂ and ρ̂, which may use a larger number of order statistics than the number

k used in the estimation of the tail index γ. In Drees’s class of functionals, the

minimal asymptotic variance of an “asymptotically unbiased” estimator is given

by (γ(1 − ρ)/ρ)2 > γ2, whereas, as we shall see later on, we are here able to ob-

tain estimators with an asymptotic variance equal to γ2, the asymptotic variance

of the Hill estimator in (1.5).

Remark 1.2. If we work with the excesses over a high random threshold,

W
ik

:= Xn−i+1:n − Xn−k:n, 1 ≤ i ≤ k, and in a similar way try to accomo-

date bias in these excesses, assuming that W
ik

comes from a Generalized Pareto

model, with d.f. GPγik,α(w) = 1 − (1 + αw)−1/γik , w ≥ 0, γik = γ eβ(n/k)ρψik ,

ψik given in (1.8), 1 ≤ i ≤ k, we arrive at the maximum likelihood tail index

estimator,

γ̂(k) :=
1
k

k∑
i=1

e−β̂(n/k)ρ̂ψ̂ik ln(1 + α̂ Wik),

obviously dependent on the maximum likelihood estimators α̂, β̂ and ρ̂ of α, β

and ρ, respectively. If we do not estimate α through maximum likelihood, but we

further think that for heavy tails, a possible estimator of the scale parameter α

in the GP model is {1/Xn−k:n}, we come again to the estimator in (1.12).
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Let us assume everything is known, apart from γ. We may state the follow-

ing:

Theorem 1.1. Let us consider the r.v. WLE(k) ≡ WLEβ, ρ(k), given by the

functional expression in (1.12) but with
(
β̂, ρ̂

)
replaced by (β, ρ). Under the

second order framework in (1.2), and for levels k such that (1.3) holds, the

asymptotic distributional representation,

WLE(k) ≡ A
(0)
k

d= γ +
γ√
k

Nk + Rk, Rk = op(A(n/k)), (1.13)

holds true, with Nk
a∼ Normal(0,1).

Consequently,
√

k (WLE(k) − γ) is asymptotically normal with variance equal

to γ2, and a null mean value not only when
√

k A(n/k) → 0, but also when
√

k A(n/k) −→ λ 
= 0, finite, as n → ∞. We may even guarantee the asymptotic

normality of WLE(k) if we further consider levels k such that
√

k A(n/k) → ∞,

provided that
√

k Rk
p−→

n→∞
λR , finite.

Remark 1.3. Theorem 1.1 provides thus a technical motivation for the estima-

tor in (1.12) when we assume that all the model parameters, but the tail index γ,

are known. If we estimate β and ρ consistently, using perhaps a number of top

order statistics larger than the one needed for the estimation of γ at sub-optimal

levels, i.e., levels k such that
√

k Rk → 0, being Rk the remainder in (1.13), we

hope to be able to get also an asymptotic variance equal to γ2, which is smaller

than the minimal asymptotic variance we have been able to reach so far with

“asymptotically unbiased” estimators of γ.

The main problems to be dealt with are then related to the estimation of

β and ρ in order to get WLE
β̂, ρ̂

(k) in (1.12). Computationally, we shall pay

special attention to the external estimation of the second order parameters β

and ρ. Such a decision is related to the discussion in Gomes and Martins (2002)
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on the advantages of an external estimation of the second order parameter

ρ — or even their misspecification, as in Gomes et al. (2000) and Gomes

and Martins (2004) — versus an internal estimation at the same level k, as

done in Beirlant et al. (1999) and Feuerverger and Hall (1999). In section 2

we shall briefly review well-known estimators of the second order parameters

β and ρ, providing additional information on the class of β-estimators. We

also deal with an extra estimator of β based on the log-excesses, which is

asymptotically equivalent to the first one. In section 3, we derive the asymptotic

behaviour of the WLE−estimator in (1.12), estimating ρ externally and β both

internally and externally. In section 4, we shall exhibit the performance of

the WLE−estimator, comparatively to the classical Hill estimator and to one

of the “asymptotically unbiased” estimators proposed in Gomes and Martins

(2002), through the use of simulation techniques. We shall also consider a

case-study related to the exchange rate of the Euro against the UK Pound,

in order to illustrate the behaviour of this new estimator. Finally, in section

5, we shall provide an appendix, with the proofs of the main results in the paper.

2 The second order parameters’ estimators

2.1 The estimation of ρ

We shall first address the estimation of ρ. We have nowadays easy access to

classes of ρ-estimators which work well both theoretically and in practice, like

the ones introduced in Gomes et al. (2002) and Fraga Alves et al. (2003). The

estimators of ρ to be considered in this study are particular members of the

class of estimators proposed by Fraga Alves et al. (2003), where an heuristic

non-optimal choice of the threshold seems to provide interesting results for a

large set of models. Under adequate general conditions, such a class provides

semi-parametric asymptotically normal estimators of ρ < 0, which show highly
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stable sample paths as functions of k, the number of top o.s.’s used, for a

wide range of large k-values. Such a class of estimators is parameterised in a

tuning parameter τ , but we shall consider only, in the simulations, the statistics

associated to τ = 0 and to τ = 1, usually preferable whenever |ρ| ≤ 1 and

|ρ| > 1, respectively. Let us consider the statistics

T (τ)
n (k) :=



ln
(
M

(1)
n (k)

)
− 1

2
ln

(
M

(2)
n (k)/2

)
1
2

ln
(
M

(2)
n (k)/2

)
− 1

3
ln

(
M

(3)
n (k)/6

) if τ = 0

(
M

(1)
n (k)

)τ
−

(
M

(2)
n (k)/2

)τ/2

(
M

(2)
n (k)/2

)τ/2
−

(
M

(3)
n (k)/6

)τ/3 if τ > 0,

(2.1)

where

M (j)
n (k) =

1
k

k∑
i=1

[
ln

Xn−i+1:n

Xn−k:n

]j

, j ≥ 1 [M (1)
n ≡ H in (1.5)].

The statistics in (2.1) converge towards 3(1−ρ)/(3−ρ) for every τ ≥ 0, whenever

the second order condition (1.2) holds, k is such that (1.3) holds and, as n → ∞,
√

k A(n/k) → ∞. We may thus get a class of consistent estimators for ρ,

ρ̂(k) ≡ ρ̂(τ)
n (k) := −

∣∣∣∣∣∣
3

(
T

(τ)
n (k) − 1

)
T

(τ)
n (k) − 3

∣∣∣∣∣∣ . (2.2)

The theoretical and simulated results in Fraga Alves et al. (2003) led us to

consider the ρ-estimators associated to a high level k1, already used with success

in Gomes and Martins (2002) to estimate the tail index γ. Such a level k1, given

by

k1 = min
(

n − 1,

[
2n

ln lnn

])
, (2.3)

where [x] denotes, as usual, the integer part of x, has not been chosen in any op-

timal way, but works well in practice. We shall thus work with the ρ-estimators,

ρ̂i := −
∣∣∣∣∣3(T (i)

n (k1) − 1)

T
(i)
n (k1) − 3

∣∣∣∣∣ , i = 0, 1, (2.4)
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with T
(i)
n (k) and k1 given in (2.1) and (2.3), respectively. To denote generally

any of the estimators ρ̂i, i = 0, 1, or more generally any of the estimators in

(2.2) computed at the level k1 in (2.3), we shall often use the notation ρ̂.

Remark 2.1. Note that ρ̂(k) in (2.2) is consistent for the estimation of ρ

whenever k is intermediate and
√

k A(n/k) → ∞. Moreover, it is possible

to prove (Fraga Alves et al., 2003) that ρ̂(k) − ρ = Op

(
1/

(√
k A(n/k)

))
.

Consequently, with ρ̂i given in (2.4), ρ̂i − ρ = Op

(
1/

(√
k1 A(n/k1)

))
=

Op

(
(ln2 n)(1−2ρ)/2/

√
n
)
, i = 0, 1, with the obvious notation ln2 n = ln lnn.

2.2 The estimation of β based on the scaled log-spacings

In the computational study in this paper, we have considered the estimator of

β obtained in Gomes and Martins (2002), and based on the scaled log-spacings

Ui = i {lnXn−i+1:n − lnXn−i:n} , 1 ≤ i ≤ k. (2.5)

Such an estimator is given by

β̂U (k; ρ̂) :=
(

k

n

)ρ̂

(
1
k

k∑
i=1

(
i
k

)−ρ̂
) (

1
k

k∑
i=1

Ui

)
−

(
1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)
(

1
k

k∑
i=1

(
i
k

)−ρ̂
) (

1
k

k∑
i=1

(
i
k

)−ρ̂
Ui

)
−

(
1
k

k∑
i=1

(
i
k

)−2ρ̂
Ui

) .

(2.6)

In Gomes and Martins (2002) has been derived, under the second order

framework, the asymptotic behaviour of β̂U (k; ρ). We shall here summarize the

results therewith presented, together with further results on β̂U (k; ρ̂), ρ̂ any of

the estimators in (2.2) computed at the level k1 in (2.3), as well as on β̂U (k; ρ̂(k)).

Theorem 2.1. If the second order condition (1.2) holds, with A(t) = γ β tρ,

ρ < 0, if ρ̂ is a consistent estimator of ρ, if k = kn is a sequence of intermediate
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positive integers, i.e. (1.3) holds, and if
√

k A(n/k) −→
n→∞

∞, then β̂U (k; ρ̂) in

(2.6) converges in probability towards β, as n → ∞. Moreover,

β̂U (k; ρ) d= β +
σ

β̂
U√

k A(n/k)
B

U

k + R
U

k , R
U

k = op(1), (2.7)

where B
U

k
a∼ Normal(0,1) and

σ
β̂

U
=

γ |β|(1 − ρ)
√

1 − 2ρ

|ρ| . (2.8)

The distributional representation (2.7) remains true if we replace β̂U (k, ρ)

by β̂U (k; ρ̂), with ρ̂ any of the estimators in (2.2) computed at the level k1 in

(2.3). If
√

k A(n/k) RU
k → λU , finite, we may further guarantee the asymptotic

normality of β̂U (k; ρ̂).

If we consider β̂U (k, ρ̂(k)), then

β̂U (k, ρ̂(k)) − β ∼ −β ln(n/k) (ρ̂(k) − ρ) . (2.9)

Remark 2.2. As shown in Gomes and Martins (2002), under the second order

framework in (1.2), and for levels k such that (1.3) holds,

1
k

k∑
i=1

(
i

k

)α−1

Ui
d=

γ

α
+

(
γ Z

(α)
k√

(2α − 1) k
+

A(n/k)
α − ρ

)
(1 + op(1)),

with

Z
(α)
k =

√
(2α − 1) k

(
1
k

k∑
i=1

(
i

k

)α−1

Ei −
1
α

)
, α ≥ 1, (2.10)

denoting {Ei} again independent, unit exponential r.v.’s. Since the denominator

of β̂U (k; ρ̂), in (2.6), converges towards
{
−γ ρ2/

(
(1 − ρ)2(1 − 2ρ)

)}
, we may

write

β̂U (k; ρ) d= −β(1 − ρ)2(1 − 2ρ)
ρ2 A(n/k)

(
γ√
k

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

)

− ρ2 A(n/k)
(1 − ρ)2(1 − 2ρ)

)
(1 + op(1)),
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and, if
√

k A(n/k) → ∞, we have

β̂U (k; ρ) d= β +
γ β√

k A(n/k)

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

)
+ op(1).

Hence, since the asymptotic covariance between Z
(1)
k and Z

(1−ρ)
k is

√
1 − 2ρ/(1 − ρ), we may choose BU

k in (2.7) as

B
U

k =
(1 − ρ)

√
1 − 2ρ

|ρ|

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

)
,

with Z
(α)
k given in (2.10).

Remark 2.3. For i = 0, 1, let us denote β̂i1 := β̂U (k1, ρ̂i), with ρ̂i given

in (2.4). From (2.9), we get β̂i1 − β = Op

(
ln(n/k1)/

(√
k1 A(n/k1)

))
=

Op

(
ln3 n (ln2 n)(1−2ρ)/2/

√
n
)
, again with the notation ln2 n = ln lnn and ln3 n =

ln ln lnn.

2.3 A first simulation experiment

We have here implemented a simulation experiment, with 1000 runs, for an

underlying Burr parent, F (x) = 1 −
(
1 + x−ρ/γ

)1/ρ
, x ≥ 0, with ρ = −0.5

and γ = 1. For these Burr models, β = γ for any ρ. We have estimated β

through β̂U (k; ρ̂0), computed at the level k used for the estimation of the tail

index, as well as computed at the level k1 = min(n − 1, [2n/ ln lnn]) in (2.3),

the one used for the estimator ρ̂0 in (2.4), and again not chosen in any optimal

way. We use the notation β̂01 = β̂U (k1; ρ̂0). The estimates of β and ρ have

been incorporated in the WLE-estimator, leading to WLE
β̂

U
(k; ρ̂0), ρ̂0

(k) and

WLE
β̂01, ρ̂0

(k). The simulations show that the tail index estimator WLE
β̂01, ρ̂0

seems to work reasonably well, as illustrated in Figure 1.

The discrepancy between the behaviour of the estimator WLE
β̂01, ρ̂0

(k) and

the r.v. WLEβ, ρ(k) suggests that some improvement in the estimation of sec-

ond order parameters may be still welcome, but the behaviour of the mean
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Figure 1: Mean values and Mean Squared errors of the estimators under study for samples of size

n = 1000, from a Burr parent with γ = 1 and ρ = −0.5 (β = 1).

squared error of the WLE−estimator is rather interesting: the new estimator,

WLE
β̂01, ρ̂0

(k), is better than the Hill estimator not only when both are con-

sidered at their optimal levels, but also for every sub-optimal level k, and this

contrarily to what happens with WLE
β̂

U
(k; ρ̂0), ρ̂0

(k), as we may also see in this

same figure.

2.4 Estimation of β based on the log-excesses

Since our tail index estimator is a linear combination of the log-excesses, we

thought it would be sensible to consider here an approach for the estimation of

β, based now on the log-excesses, V
ik

, 1 ≤ i ≤ k, in (1.4).

Let us introduce the notations:

sk :=
1
k

k∑
i=1

ψ
ik
≡ 1

k

k∑
i=1

ψ(i/k), 1 ≤ i ≤ k, (2.11)

with ψ given in (1.8),

s∗k :=
1
k

k∑
i=1

ψ∗
ik
≡ 1

k

k∑
i=1

ψ∗(i/k), 1 ≤ i ≤ k, ψ∗(u) =
u−ρ − 1

ρ
. (2.12)

13



Remark 2.4. The following limiting relations hold true:

lim
k→∞

sk = −1
ρ

∫ 1

0

x−ρ − 1
lnx

dx = − ln(1 − ρ)
ρ

, (2.13)

and

lim
k→∞

s∗k =
1
ρ

∫ 1

0
(x−ρ − 1) dx =

1
1 − ρ

. (2.14)

The derivative of the log-likelihood (1.9) in order to β leads to the maximum

likelihood equation

1
k

k∑
i=1

ψik V
ik

e−β (n/k)ρ ψik − γ

k

k∑
i=1

ψik = 0.

But this equation does not lead to consistent estimators of β, because as we shall

see later on, in Remark 5.1, the first member, equal to A
(1)
k − γ sk, with A

(1)
k

and sk given in (1.10) and (2.11), respectively, converges, as k → ∞, towards

γ (1/(1 − ρ) + ln(1 − ρ)/ρ) 
= 0. In order to get convergence towards 0 we shall

replace, in the second sum, ψik by

ψ∗
ik = ψ∗(i/k) = −ψik ln(i/k) =

(i/k)−ρ − 1
ρ

, 1 ≤ i ≤ k.

The “quasi-maximum likelihood” β-estimator is thus solution of the implicit

equation,(
1
k

k∑
i=1

ψ̂ik e−β̂ (n/k)ρ̂ ψ̂ik V
ik

)
−

(
1
k

k∑
i=1

ψ̂∗
ik

) (
1
k

k∑
i=1

e−β̂ (n/k)ρ̂ ψ̂ik V
ik

)

=: Â
(1)
k − ŝ∗k Â

(0)
k = 0. (2.15)

If we use a first order approximation for ex = 1 + x, as x → 0, we come to the

explicit β-estimator:

β̂V (k; ρ̂) =
(

k

n

)ρ̂

(
1
k

k∑
i=1

ψ̂∗
ik

) (
1
k

k∑
i=1

V
ik

)
−

(
1
k

k∑
i=1

ψ̂ikVik

)
(

1
k

k∑
i=1

ψ̂∗
ik

) (
1
k

k∑
i=1

ψ̂ikVik

)
−

(
1
k

k∑
i=1

ψ̂2
ikVik

) , (2.16)
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quite similar to the estimator in (2.6), but with Ui replaced by V
ik

and (i/k)−ρ

replaced by ψ
ik

.

With the obvious notation for B̂
(j)
k and ŝ∗k, j ≥ 0, with B

(j)
k and s∗k given in

(1.11) and (2.12), respectively, we may write:

β̂V (k; ρ̂) =
(

k

n

)ρ̂ ŝ∗k B̂
(0)
k − B̂

(1)
k

ŝ∗k B̂
(1)
k − B̂

(2)
k

,

and we may further state the following result, similar to Theorem 2.1, but now

related to the β-estimator herewith considered:

Theorem 2.2. If the second order condition (1.2) holds, with A(t) = γ β tρ,

ρ < 0, if ρ̂ is any consistent estimator of ρ, if k = kn is a sequence of intermedi-

ate integers, i.e., (1.3) holds, and if we further have lim
n→∞

√
k A(n/k) = ∞, then

β̂V (k; ρ̂) in (2.16) converges in probability towards β, as n → ∞. We may write

β̂V (k; ρ) d= β +
σ

β̂V√
k A(n/k)

B
V

k + R
V

k , with R
V

k = op(1), (2.17)

where B
V

k
a∼ Normal(0, 1), being

σ
β̂V

=
γ |β|

√
σ2

1 − a2
1

(a2
1 − a2)

, (2.18)

with

a1 =
1

1 − ρ
, a2 = − ln(1 − 2ρ) − 2 ln(1 − ρ)

ρ2
(2.19)

and

σ2
1 =

2
ρ2

∫∫
0≤u<v≤1

(
u−ρ − 1

lnu

v−ρ − 1
ln v

)
1 − v

v
du dv. (2.20)

The distributional representation (2.17) remains true if we replace β̂V (k, ρ) by

β̂V (k; ρ̂), with ρ̂ any of the estimators in (2.2) computed at the level k1 in (2.3). If
√

k A(n/k) RV
k → λV , finite, we may further guarantee the asymptotic normality

of β̂V (k; ρ̂).
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Again, if we consider β̂V (k, ρ̂(k)),

β̂V (k, ρ̂(k)) − β ∼ −β ln(n/k) (ρ̂(k) − ρ) , as n → ∞, (2.21)

i.e., the rate of convergence of β̂V (k, ρ̂(k)) towards β is of the order of

ln(n/k)/
(√

k A(n/k)
)
.

Remark 2.5. Note that the result in Remark 2.3 holds true if we replace β̂U by

β̂V . For the difference between σ
β̂U

in (2.8) and σ
β̂V

in (2.18) see Figure 2 in

Remark 3.3.

3 Asymptotic behaviour of the tail index estimator

3.1 The Weighted Log Excesses’ estimator and the external es-

timation of β and ρ

If we estimate β externally, in an adequate way and at a larger level than the

level k on which we are going to base the estimation of the tail index γ, we may

be able to keep the asymptotic variance of the final tail index estimator equal

to the asymptotic variance of Hill’s estimator. Indeed, as a consequence of

Theorem 1.1, the use of Cramèr’s delta-method enables us to state the following:

Theorem 3.1. Under the conditions of Theorem 1.1, the same distribu-

tional representation (1.13) holds true if we consider the tail index estima-

tor WLE
β̂, ρ̂

(k) for any consistent estimators β̂ and ρ̂ of β and ρ, respec-

tively, such that both {β̂ − β} and (ρ̂ − ρ) ln(n/k) are simulataneously op(1)

and op(1/(
√

k A(n/k))), for the k-values on which we base the estimation of the

tail index γ. These conditions for ρ̂ and β̂ hold true if we consider levels k such

that
√

k A2(n/k) → λ, finite, and the estimators in (2.2) and (2.6) [or (2.16)],

respectively, both computed at the level k1 in (2.3).

16



Remark 3.1. We think that this is a remarkable result from a practical point

of view, because we are able to reduce the dominant component of bias, without

increasing the asymptotic variance. We may thus expect to obtain, for the new

estimator, a mean squared error smaller than that of the Hill estimator for every

level k, either sub-optimal or optimal. We have thus been able to overpass the

old trade-off between variance and bias.

Remark 3.2. Note also that the levels k such that
√

k A(n/k) → λ, finite, are

sub-optimal for this estimator. To go further to the optimal level associated to

this estimator, we should go into a third order framework, like the one considered

in Gomes and de Haan (1999), Gomes et al. (2002) and Fraga Alves et al. (2003),

considering levels k such that
√

k A(n/k) → ∞, as n → ∞.

3.2 The joint estimation of γ and β at the same level

The following result follows straightforwardly from Theorems 1.1, 2.1 and 2.2:

Theorem 3.2. If the second order condition (1.2) holds, with A(t) = γ β tρ,

ρ < 0, if k = kn is a sequence of intermediate integers, i.e., (1.3) holds, and if

ρ̂ is any of the estimators in (2.2) computed at the level k1 in (2.3),

WLE
β̂

U
(k; ρ̂), ρ̂

(k) d= γ +
γ(1 − ρ)
|ρ|

√
k

B
U

k + op(A(n/k)) (3.1)

and

WLE
β̂

V
(k; ρ̂), ρ̂

(k) d= γ +
γ

√
a2

1σ
2
1 + a2

2 − 2a2
1a2

(a2
1 − a2)

√
k

B
V

k + op(A(n/k)), (3.2)

where BU
k and BV

k are asymptotically standard normal r.v.’s. Hence,
√

k
(
WLE

β̂• (k; ρ̂), ρ̂
(k) − γ

)
are both asymptotically normal with a null mean

value whenever
√

k A(n/k) → λ, finite, non-necessarily null. The asymptotic

standard deviations of WLE
β̂

U
(k; ρ̂), ρ̂

(k) and WLE
β̂

V
(k; ρ̂), ρ̂

(k) are thus ruled

by

σ
WLE

β̂
U

(k; ρ̂)
=

γ (1 − ρ)
|ρ| (3.3)
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and

σ
WLE

β̂
V

(k; ρ̂)
=

γ
√

a2
1σ

2
1 + a2

2 − 2a2
1a2

a2
1 − a2

, (3.4)

respectively, with (a1, a2) and σ2
1 given in (2.19) and (2.20), respectively.

Remark 3.3. If we compare Theorem 3.1 and Theorem 3.2 we see that the

estimation of γ and β at the same level k induces an increase in the asymp-

totic variance of our final γ-estimator of factors given by ((1 − ρ)/ρ)2 or

(a2
1σ

2
1 + a2

2 − 2a2
1a2)/(a2

1 − a2)2, both greater than 1, according as we base our es-

timation of β on the scaled log-spacings Ui or on the log-excesses Vik, respectively.

In Figure 2 we provide both a picture and some values of σ
β̂

U
/(βγ), σ

β̂
V

/(βγ),

σ
WLE

β̂
U

(k; ρ̂)
/γ and σ

WLE

β̂
V

(k; ρ̂)
/γ, as a function of |ρ|, with σ

β̂
U
, σ

β̂
V
, σ

WLE

β̂
U

(k; ρ̂)
and

σ
WLE

β̂
V

(k; ρ̂)
given in (2.8), (2.18), (3.3) and (3.4), respectively.

0.1 11.00 12.04 12.05 13.20
0.2 6.00 6.24 7.10 7.40
0.3 4.33 4.44 5.48 5.63
0.4 3.50 3.57 4.70 4.80
0.5 3.00 3.05 4.24 4.32
1.0 2.00 2.04 3.46 3.55
1.5 1.67 1.70 3.33 3.44
2.0 1.50 1.54 3.35 3.50
2.5 1.40 1.44 3.43 3.62

0

5

0 0.5 1 1.5 2 2.5

σ
β̂U

σ
β̂V

σβ̂ ( )V k
WLE

| |ρ

| |ρ σβ̂ ( )V k
WLE σ

β̂V

σ
β̂U

σβ̂ ( )U k
WLE

σβ̂ ( )U k
WLE

Figure 2: “Rulers” of the asymptotic standard deviations of β̂U (k; ρ), β̂V (k; ρ), WLE
β̂

U
(k; ρ), ρ

and WLE
β̂

V
(k; ρ), ρ

, for γ = β = 1.

Notice that there is only a very slight difference between the asymptotic vari-

ances of β̂U (k; ρ), based on the scaled log-spacings, and β̂V (k; ρ), based on the

log-excesses, but such a difference is not at all relevant in practice, and the two

estimators provide practically the same results when incorporated in the estima-
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tion of the tail index γ. Due to the slightly smaller asymptotic variances asso-

ciated to the use of the scaled log-spacings Ui, we shall use, in the simulations,

such an estimator of β.

4 Simulated behaviour of the estimators and an ap-

plication to real data

4.1 The simulation experiment

In Figures 3 and 4 we present the mean value and the mean squared error

patterns of the WLE-estimator for two typical heavy-tailed distributions, the

Fréchet d.f., F (x) = exp
(
−x−1/γ

)
, x ≥ 0 and the Burr d.f., respectively, both

with γ and |ρ| equal to 1.
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0 200 400 600 800 1000

0.5

1.0

1.5

0 200 400 600 800 1000

E[•] MSE[•]

H H

WLE β ρ,( )

WLE β ρ,( )

kk

WLE ˆ , ˆβ ρ01 0( )

WLE ˆ , ˆβ ρ01 0( )

Figure 3: Mean values and Mean Squared errors of the estimator under study for a sample size

n = 1000, from a standard Fréchet parent with γ =1 (β = 0.5, ρ = −1).

The interesting pattern we have got before appears here as well. As said

before, we think that the most important feature of this estimator lies on the

fact that its mean squared error is smaller than the mean squared error of the

Hill estimator for all values of k. For values of |ρ| > 1, illustrated here in Figure
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Figure 4: Mean values and Mean Squared errors of the estimator under study for a sample size

n = 1000, from a Burr parent γ = 1 and ρ = −1 (β = 1).

5, with a Burr parent with (γ, ρ) = (1,−2) such a nice feature disappears when

we use ρ̂0, but it is kept if we use ρ̂1 instead.
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WLE ˆ , ˆβ ρ01 0( )

WLE ˆ , ˆβ ρ01 0( )

WLE ˆ , ˆβ ρ11 1( )

WLE ˆ , ˆβ ρ11 1( )

Figure 5: Mean values and Mean Squared errors of the estimator under study for a sample size

n = 1000, from a Burr parent with γ = 1 and ρ = −2 (β = 1).

The simulation performed for other models enables us to say that it is always

safe to use the new estimator WLE
β̂01, ρ̂0

, whenever we are in Hall’s class of

models and the Hill estimator clearly exhibits a reasonably high bias, either

positive or negative, — and this means that we are for sure in a region of ρ-

values such that |ρ| ≤ 1. If |ρ| > 1 we shall then use WLE
β̂11, ρ̂1

. Anyway, to
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achieve the MSE pattern of the r.v. WLEβ, ρ, further work on the estimation

of the second order parameters, or more generally of the bias’ function still needs

to be developed.

4.2 An illustration

We shall herewith consider an illustration of the performance of the above

mentioned class of estimators, through the analysis of the Euro-UK Pound

daily exchange rates from January 4, 1999 till December 15, 2003. In Figure 5,

working with the n0 = 593 positive log-returns, we present the sample path of

the ρ̂
(τ)
n estimates in (2.2) (left), as function of k, for τ = 0 and τ = 1, together

with the sample paths of the classical Hill estimator, H, and of WLE
β̂01, ρ̂0

(right).
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0.50

1.00

1.50

2.00

0 200 400 600-4

-3

-2

-1

0

0 200 400 600

ˆ ( )ρ0 k

ˆ ( )ρ1 k

k

H

WLE ˆ , ˆβ ρ01 0

γ = 0 3.
k

Figure 6: Estimates of the second order parameter ρ (left) and of the tail index γ (right) for the

Daily Log-Returns on the Euro-UK Pound.

The sample paths of the ρ-estimates associated to τ = 0 and τ = 1 lead

us to choose, on the basis of any stability criterion for large k, the estimate

associated to τ = 0. From previous experience with this type of estimates,

we conclude that the underlying ρ-value is larger or equal to −1, and the

consideration of τ = 0 is then advisable. The estimate of ρ is in this case

ρ̂0 = −0.66. We further get β̂0 = 1.03.
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Regarding the tail index estimation, note that the Hill estimator exhibits a

relevant positive bias, as may be seen from Figure 5 (right). The other estimator,

WLE
β̂01, ρ̂0

(k), which is “asymptotically unbiased”, reveals without doubt a

smaller bias, and, in an easier way, enables us to take a decision upon the

estimate of γ to be used, with the help of any stability criterion. Indeed, for any

level k, any estimate considered on the basis of WLE
β̂01, ρ̂0

(k) performs for sure

better than the estimate based on H(k). In Figure 6, we represent the estimate

γ̂ = 0.3, the median of the WLE
β̂01, ρ̂0

(k) estimates, for thresholds k between[
n−2ρ̂0/(1−2ρ̂0)

]
/4 = 9 and

[
4 × n−2ρ̂0/(1−2ρ̂0)

]
= 150. It is worth noticing that

in Gomes et al. (2003), the use of a Best Linear Unbiased Estimator and an

heuristic stablity criterion led us also to an estimate γ̂ = 0.3. We have there

used the following rule: given a set of tail index estimates γ̂(k), 1 ≤ k < n,

based on the observed sample of size n, consider those estimates with a small

number r of decimal figures, and denote them γ̂r(k).

1. For any possible value a in the domain of γ̂r(k), consider the largest run

associated with a, i.e., R(a), the maximum number of consecutive k values

such that γ̂r(k) = a;

2. Consider as a data-driven estimate of the tail index, γ̂ = arg max
a

R(a).

Here, if we consider the tail index estimates WLE
β̂01, ρ̂0

(k) with one decimal

figure, the largest run is also associated to the value 0.3. Such a largest run has

a size equal to 131 (49 ≤ k ≤ 189). If we began counting the run from the first

time the value a appears, even if after that we get some values smaller than a,

we get a run of size 177 (13 ≤ k ≤ 189).

5 Appendix

5.1 Proof of Theorem 1.1

We shall base the proof of Theorem 1.1 on the following lemmas:
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Lemma 5.1. For every ρ < 0, ψ(u) = − (u−ρ − 1) /(ρ lnu), in (1.8), is a

limited increasing function in u ∈ [0, 1], assuming values in [0, 1]. Moreover,

ψ∗(u) = − lnu ψ(u), in (2.12), is decreasing in u ∈ [0, 1], assuming values in

[0,−1/ρ].

Proof. From the definition of ψ in (1.8), ψ(u) = −(u−ρ − 1)/(ρ lnu),

dψ(u)/du = (1 − u−ρ + u−ρ lnu−ρ)/(−ρ u ln2 u). From the inequality,

(u−ρ − 1)/u−ρ < lnu−ρ, 0 < u < 1, we get dψ(u)/du > 0. We have trivially

ψ(0) = 0 and ψ(1) = lim
u→1

ρ u−ρ−1/(ρ u−1) = lim
u→1

u−ρ = 1. On the other side,

since ψ∗(u) = (u−ρ − 1)/ρ, dψ∗(u)/du = −u−ρ−1 < 0, if 0 < u < 1, and

ψ∗(0) = −1/ρ, ψ∗(1) = 0.

Lemma 5.2. For integer values j, let us consider

P
(j)
k :=

1
k

k∑
i=1

ψj
ik

Ek−i+1:k, j ≥ 0, (5.1)

and

Q
(j)
k :=

1
k

k∑
i=1

ψj−1
ik

Y ρ
k−i+1:k − 1

ρ
, j ≥ 1, (5.2)

with ψ given in (1.8), being {Ei} and {Yi} sequences of i.i.d. standard exponen-

tial and Pareto r.v.’s, respectively. Denoting E the mean value operator, both

E

(
P

(j)
k

)
and E

(
Q

(j)
k

)
converge towards

aj :=
(−1)j−1

ρj

∫ 1

0

(v−ρ − 1)j

lnj−1 v
dv = −

∫ 1

0
ψj(v) lnv dv < ∞, j ≥ 1, (5.3)

with a0 = E

(
P

(0)
k

)
= 1. For the particular cases j = 1, 2, a1 and a2 are

explicitly given in (2.19). Moreover, for j ≥ 0,

σ2
j = lim

n→∞
k Var

(
P

(j)
k

)
=

2
ρ2j

∫∫
0≤u<v≤1

(
u−ρ − 1

lnu

v−ρ − 1
ln v

)j 1 − v

v
du dv < ∞ [σ0 = 1]. (5.4)
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Consequently, for j ≥ 0, P
(j)
k in (5.1) converges in probability towards aj, as

k → ∞, with aj , j ≥ 1, given in (5.3), a0 = 1.

Also

k Cov
(
P

(0)
k , P

(1)
k

)
∼ a1 = 1/(1 − ρ). (5.5)

Proof. For j = 0, the law of large numbers enables us to guarantee immedi-

ately that P
(0)
k = 1

k

k∑
i=1

Ei converges in probability towards E

(
P

(0)
k

)
= 1 =: a0.

For j ≥ 1, the use of Rényi’s representation of exponential o.s.’s as lin-

ear combinations of independent standard exponential r.v.’s (Rényi, 1953),

Ei:n =
i∑

j=1
Ej/(n − j + 1), 1 ≤ i ≤ n, enables us to write

E

(
P

(j)
k

)
=

1
k

k∑
i=1

ψj
ik

E (Ek−i+1:k) =
1
k

k∑
i=1

ψj
ik

E

(
k∑

r=i

Er

r

)

=

(
1
k

k∑
i=1

ψj(i/k)

(
1
k

k∑
r=i

1
r/k

))

−→
k→∞

∫ 1

0
ψj(v) dv

∫ 1

v

1
u

du = −
∫ 1

0
ψj(v) ln(v)dv = aj ,

as given in (5.3). Note that, from Lemma 5.1, |ψ| ≤ 1, and consequently,

0 ≤ aj ≤ a1 = 1/(1 − ρ), for any j ≥ 1, being thus finite. Since

Cov (Ek−i+1:k, Ek−r+1:k) = Var
(
Ek−max(i,r)+1:k

)
=

k∑
s=max(i,r)

1
s2

,

k Var
(
P

(j)
k

)
=

2
k

∑
1≤i≤r≤k

ψj
ik

ψj
rk

Var (Ek−r+1:k)

=
2
k

k∑
i=1

ψj(i/k)

(
1
k

k∑
r=i

ψj(r/k)

(
1
k

k∑
s=r

1
(s/k)2

))

−→
k→∞

2
∫∫

0≤u≤v≤1

ψj(u) ψj(v)
(

1 − v

v

)
du dv

=: σ2
j (ρ), as given in (5.4).
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Again from Lemma 5.1, for every ρ, σ2
j (ρ) is non-increasing in j and bounded

by σ2
0 = k Var

(
P

(0)
k

)
= 1, being consequently finite. Since E

(
P

(j)
k

)
→ aj and

Var
(
P

(j)
k

)
→ 0, as k → ∞, P

(j)
k converges in probability towards aj , for every

j ≥ 0. We also have

k Cov
(
P

(0)
k , P

(1)
k

)
=

1
k

k∑
i=1

k∑
j=1

ψ
jk

Cov (Ek−i+1:k, Ek−j+1:k)

=
1
k


k∑

i=1

k∑
j=i

ψ
jk

k∑
s=j

1
s2

+
k∑

i=1

i−1∑
j=1

ψ
jk

k∑
s=i

1
s2


=

1
k


k∑

j=1

ψ
jk

j∑
i=1

 k∑
s=j

1
s2

 +
k−1∑
j=1

ψ
jk

k∑
s=j+1

s − j

s2


=

1
k


k∑

j=1

ψ
jk

k∑
s=j

j

s2
+

k−1∑
j=1

ψ
jk

k∑
s=j+1

s − j

s2


−→
k→∞

∫ 1

0
ψ(u)du

∫ 1

u

1
v
dv = a1 = 1/(1 − ρ),

and (5.5) follows.

Proof. (Theorem 1.1). As seen before in (1.6),

V
ik

d= γ Ek−i+1:k +
Y ρ

k−i+1:k − 1
ρ

A(n/k) (1 + op(1)),

with the op(1) uniform in i, 1 ≤ i ≤ k. Also,

exp
(
−β

(n

k

)ρ
ψ

ik

)
= 1 − β

(n

k

)ρ
ψ

ik
(1 + o(1)) ,

with the o(1)-term again uniform in i, 1 ≤ i ≤ k. We may then write

WLE(k) =
1
k

k∑
i=1

e−β(n/k)ρψik V
ik

=
1
k

k∑
i=1

V
ik
− β

(n

k

)ρ
(

1
k

k∑
i=1

ψ
ik

V
ik

)
(1 + op(1)) ,

d= γ P
(0)
k + A(n/k)

(
Q

(1)
k − P

(1)
k

)
(1 + op(1)),
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with P
(j)
k and Q

(j)
k given in (5.1) and (5.2), respectively. The law of large

numbers enable us to guarantee that Q
(1)
k converges in probability towards

E ((Y ρ − 1)/ρ) = 1/(1 − ρ) ≡ a1, and from Lemma 5.2, P
(1)
k converges also

in probability towards a1. Since both P
(1)
k and Q

(1)
k converge in probability to-

wards a1 = 1/(1−ρ), (1.13) as well as the remaining of the theorem follow, with

Nk =
√

k
(
P

(0)
k − 1

)
, i.e., the usual dominant component of bias, which is for

the classical estimators of the tail index of the order of A(n/k), is now of smaller

order.

5.2 Proof of theorems in Section 2

Proof. (Theorem 2.1). Consistency of β̂U (k, ρ̂), with ρ̂ any consistent estimator

of ρ, together with the result in (2.7) have been proved in Gomes and Martins

(2002). Next, note that

dj

dρj
β̂U (k; ρ) = −β̂U (k; ρ) lnj(n/k)(1 + op(1)), j ≥ 1,

and, provided that (ρ̂ − ρ) ln(n/k) = op(1),

β̂U (k; ρ̂) = β̂U (k; ρ) − β̂U (k; ρ) ln(n/k)(ρ̂ − ρ)(1 + op(1)).

Consequently, (2.7) holds true, with ρ replaced by ρ̂. If ρ̂ is any of the estimators

in (2.2) computed at the level k1 in (2.3), ρ̂ − ρ = Op

(
(ln lnn)(1−2ρ)/2/

√
n
)
, as

noticed in Remark 2.1, and consequently (ρ̂ − ρ) ln(n/k) = op(1).

The result related to β̂U (k, ρ̂(k)) comes from the fact that, since

dβ̂U (k, ρ)/dρ = − ln(n/k) β̂U (k, ρ),

β̂U (k, ρ̂(k)) = β − β (ρ̂(k) − ρ) ln(n/k)(1 + op(1)),

and (2.9) follows.

Before the proof of Theorem 2.2, we first state a lemma, proved in Chernoff

et al. (1967):
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Lemma 5.3. (Chernoff et al., 1967). Let Zk =
k∑

r=1
αrk (Er − 1) /k. Let vk =√

1
k

k∑
r=1

α2
rk =

√
k Var(Zk). Then

√
k Zk/vk

d−→
n→∞

Normal (0, 1) if and only if

max
1≤r≤k

|αrk| = o
(√

k vk

)
, as k → ∞.

We shall next prove the following lemmas:

Lemma 5.4. For any j ≥ 0, and with P
(j)
k , aj and σ2

j given in (5.1), (5.3) and

(5.4), respectively,

P
(j)
k :=

√
k

(
P

(j)
k − E

(
P

(j)
k

))
/σj

a∼ Normal(0, 1). (5.6)

Proof. We may write,

P
(j)
k =

1
k

k∑
i=1

ψj
ik

Ek−i+1:k =
1
k

k∑
i=1

ψj
ik

k∑
r=i

Er

r
=

1
k

k∑
r=1

(
1
r

r∑
i=1

ψj
ik

)
Er

=:
1
k

k∑
r=1

α(j)
rk

Er =
1
k

k∑
r=1

α(j)
rk

(Er − 1) +
1
k

k∑
r=1

α(j)
rk

=: Z
(j)
k +

1
k

k∑
r=1

α(j)
rk

= Z
(j)
k + E

(
P

(j)
k

)
.

Since α(j)
rk

=
r∑

i=1
ψj

ik
/r, with ψ

ik
= ψ(i/k), ψ(u) increasing in u ∈ [0, 1], and

varying between 0 and 1, we have

max
1≤r≤k

∣∣∣α(j)
rk

∣∣∣ = α(j)
kk

=
1
k

k∑
i=1

ψj
ik

−→
k→∞

∫ 1

0

(
x−ρ − 1
−ρ lnx

)j

dx < ∞.

Also, v
(j)
k =

√
k Var

(
Z

(j)
k

)
=

√
k Var

(
P

(j)
k

)
−→ σj(ρ), finite and given in

(5.4). From Lemma 5.3,
√

k Z
(j)
k /v

(j)
k is asymptotically standard normal, and

consequently
√

k Z
(j)
k /σj(ρ) and

√
k

(
P

(j)
k − E

(
P

(j)
k

))
/σj(ρ) are also asymp-

totically standard normal, as k → ∞.
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Lemma 5.5. For every j > 1, and with ψ(u) given in (1.8), the function

ϕj(u) := − lnu ψj(u), 0 ≤ u ≤ 1, is bounded, 0 ≤ ϕj(u) ≤ −1/ρ, 0 ≤ u ≤ 1,

with a unique maximum at k0 ∈ (0, 1), being ϕj(0) = ϕj(1) = 0.

Proof. From Lemma 5.1, |ψ| ≤ 1, and consequently ϕj is non-increasing in

j, and bounded by ϕ1(u) ≡ ψ∗(u) ≤ −1/ρ, for every u ∈ [0, 1]. Let us

think on the function g(u) = −ρ ϕj(u−1/ρ) = − lnu ((u − 1)/ lnu)j , with

the same type of behaviour of ϕj(u) for 0 < u < 1. We easily get

g′(u) = − ((u − 1)/ lnu)j−1 (j u lnu − (j − 1)(u − 1)) /(u lnu) = 0 if and only if

j u lnu − (j − 1)(u − 1) = 0, 0 < u < 1. Equivalently, with t = 1/u, we get

ln t =
(

j−1
j

)
(t − 1), t > 1. For j > 1, this equation has a unique solution, and

the result follows.

Lemma 5.6. For any integer j ≥ 0, and with P
(j)
k , aj and σ2

j given in (5.1),

(5.3) and (5.4), respectively,

P
(j)
k :=

√
k

(
P

(j)
k − aj

)
/σj

a∼ Normal(0, 1). (5.7)

Proof. From Lemma 5.4,
√

k
(
P

(j)
k − E

(
P

(j)
k

))
/σj

a∼ Normal(0, 1). It is thus

enough showing that

E

(
P

(j)
k

)
− aj =

1
k

k∑
i=1

ψj
ik

k∑
r=i

1
r
−

∫ 1

0
ϕj(v)dv = o

(
1√
k

)
,

where ϕj(v) := − ln v ψj(v) was studied in Lemma 5.1 and in Lemma 5.5, for

j = 1 and j > 1, respectively. Note that
k∑

r=i+1

1
r
≤ − ln(i/k) ≤

k−1∑
r=i

1
r
, i.e.,

1
k
≤

k∑
r=i

1
r

+ ln(i/k) ≤ 1
i
,

and consequently, since E

(
P

(j)
k

)
− 1

k

k∑
i=1

ϕj (i/k) = 1
k

k∑
i=1

ψj
ik

[
k∑

r=i

1
r + ln i

k

]
,

1
k2

k∑
i=1

ψj
ik ≤ E

(
P

(j)
k

)
− 1

k

k∑
i=1

ϕj (i/k) ≤ 1
k

k∑
i=1

ψj
ik

i
≤ 1

k

k∑
i=1

1
i
.
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Hence ∣∣∣∣∣E (
P

(j)
k

)
− 1

k

k∑
i=1

ϕj (i/k)

∣∣∣∣∣ ≤ 1
k

k∑
i=1

1
i

≤ 1 + ln k

k
.

On the other side, for j = 1, ϕ1(u) = ψ∗(u) is a decreasing function, and

consequently,

1
k

k∑
i=1

ϕ1(i/k) ≤
∫ 1

0
ϕ1(v) dv ≤ 1

k

k−1∑
i=0

ϕ1(i/k) =
1
k

k∑
i=1

ϕ1(i/k) − 1
ρ k

,

i.e.,

0 ≤
∫ 1

0
ϕ1(v) dv − 1

k

k∑
i=1

ϕ1(i/k) ≤ − 1
ρ k

.

For any integer j > 1, and as seen in Lema 5.5, 0 ≤ ϕj(u) ≤ −1/ρ, ϕj(0) =

ϕj(1) = 0, first increasing on [0, s0] and next decreasing on [s0, 1]. For each k,

define k0 ∈ [1, k] such that k0/k ≤ s0 ≤ (k0 + 1)/k. Then

1
k

 k0∑
i=0

ϕj(i/k) +
k∑

i=k0+2

ϕj(i/k)

 ≤
∫ 1

0
ϕj(v) dv ≤ 1

k

(
k−1∑
i=1

ϕj(i/k) + ϕj(s0)

)
.

Hence,

1
k

(
k∑

i=1

ϕj(i/k) − ϕj(s0)

)
≤

∫ 1

0
ϕj(v) dv ≤ 1

k

(
k∑

i=1

ϕj(i/k) + ϕj(s0)

)
.

and consequently,∣∣∣∣∣1k
k∑

i=1

ϕj(i/k) −
∫ 1

0
ϕj(v) dv

∣∣∣∣∣ ≤ ϕj(s0)
k

≤ − 1
ρ k

.

Then, for any j ≥ 1, ∣∣∣E (
P

(j)
k

)
− aj

∣∣∣ ≤ 1 + ln k

k
− 1

ρ k
.

Consequently, for any ε > 0, k1−ε
(
E

(
P

(j)
k

)
− aj

)
→ 0, and the lemma follows.

Lemma 5.7. For j ≥ 0, and for B
(j)
k in (1.11),

B
(j)
k

d= γ aj +
γ σj√

k
P

(j)
k + aj+1A(n/k)(1 + op(1)),

with aj, σj and P
(j)
k given in (5.3), (5.4) and (5.7), respectively.
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Proof. We have for j ≥ 0,

B
(j)
k

d=
γ

k

k∑
i=1

ψj
ik

Ek−i+1:k + A(n/k)
1
k

k∑
i=1

ψj
ik

(
Y ρ

k−i+1:k − 1
)

ρ
(1 + op(1))

d= γ aj +
γ σj√

k
P

(j)
k + aj+1 A(n/k)(1 + op(1)).

Proof. (Theorem 2.2). Notice that

β̂V (k; ρ)
β

=
γ

A(n/k)
s∗k B

(0)
k − B

(1)
k

s∗k B
(1)
k − B

(2)
k

,

with B
(j)
k given in (1.11). Noticing that a1 = 1/(1 − ρ) is the limiting value of

s∗k, as n → ∞, and assuming ρ known, we have

A(n/k) β̂V (k; ρ)
γ β

d=
a1 B

(0)
k (1 + o(1)) − B

(1)
k

a1 B
(1)
k (1 + o(1)) − B

(2)
k

d=
γ√
k

(
a1P

(0)
k − σ1P

(1)
k

)
+ (a2

1 − a2) A(n/k) + op(A(n/k))

γ(a2
1 − a2)(1 + op(1))

,

and consequently,

β̂V (k; ρ)
β

d= 1 +
γ√

k A(n/k)

(
a1P

(0)
k − σ1P

(1)
k

a2
1 − a2

)
+ R

V

k , with R
V

k = op(1),

i.e., β̂V (k; ρ) converges in probability towards β, provided that
√

k A(n/k) → ∞,

as n → ∞. The same result is true if we replace ρ by ρ̂, any consistent estimator

of the second order parameter ρ.

Next, note that also here

d

dρ
β̂V (k; ρ) = −β̂V (k; ρ) ln(n/k)(1 + op(1)).

Consequently, (2.17), (2.21), as well as the remaining of the theorem follow, as

in the proof of Theorem 2.1.
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Remark 5.1. Note that, more generally than Theorem 1.1, and with the same

notation as before, we may say that, for every j ≥ 0,

A
(j)
k = B

(j)
k − β

(n

k

)ρ
B

(j+1)
k (1 + op(1)) = B

(j)
k − A(n/k)

γ
B

(j+1)
k (1 + op(1))

d= γ aj +
γ σj√

k
P

(j)
k + aj+1 A(n/k) − A(n/k)

γ
(γ aj+1 + op(1))

d= γ aj +
γ σj√

k
P

(j)
k + op(A(n/k)).

5.3 Proof of theorems in Section 3

Proof. (Theorem 3.1). Denoting W := WLE(k), it is enough noticing that

∂W

∂β
= Op (A(n/k)) ,

∂2W

∂β2
= Op

(
A2(n/k)

)
,

∂W

∂ρ
= Op (A(n/k) ln(n/k)) ,

∂2W

∂β∂ρ
= Op (A(n/k) ln(n/k)) ,

∂2W

∂ρ2
= Op

(
A(n/k) ln2(n/k)

)
,

Consequently, the use of the δ-method, enables us to write

WLE
β̂, ρ̂

(k) − WLEβ,ρ(k) ∼
(
β̂ − β

)
× Op(A(n/k))

+ (ρ̂ − ρ) × Op (A(n/k) ln(n/k)) . (5.8)

If β̂ and ρ̂ are consistent for the estimation of β and ρ, respectively, and

(ρ̂ − ρ) ln(n/k) = op(1), the two terms in the second member of the previous re-

lation are op(A(n/k)). In order to have no kind of modification in the asymptotic

variance of WLEβ, ρ(k), we need to impose the two extra conditions in the the-

orem, i.e.,
{

β̂ − β
}

and (ρ̂ − ρ) ln(n/k) need both to be op

(
1/

(√
k A(n/k)

))
.

If we consider the estimators ρ̂ and β̂ in (2.2) and (2.6) [or (2.16)], respectively,

computed at the level k1 in (2.3), ρ̂−ρ = Op

(
(ln2 n)(1−2ρ)/2/

√
n
)
, and we merely

need to guarantee that

√
k A(n/k) ln(n/k) × (ρ̂ − ρ)

p−→
n→∞

0.

31



Such a result is obviously true if
√

k A(n/k) → λ, finite, but we may even

have the same result if
√

k A(n/k) → ∞. Indeed, if
√

k A(n/k) → ∞, k is of

a larger order than n−2ρ/(1−2ρ). Then n/k < O
(
n1/(1−2ρ)

)
, ln(n/k)/A(n/k) <

O
(
n−ρ/(1−2ρ) lnn

)
, and consequently,

0 ≤
∣∣∣∣(ρ̂ − ρ) ln(n/k)

A(n/k)

∣∣∣∣ < O

(
(ln lnn)(1−2ρ)/2 lnn

n1/(2(1−2ρ))

)
−→
n→∞

0, (5.9)

i.e.,
√

k A(n/k) (ρ̂ − ρ) ln(n/k) → 0, as n → ∞, provided that
√

k A2(n/k) → λ,

finite, as assumed.

Proof. (Theorem 3.2). Since (5.8) holds true with β̂ replaced by β̂U (k), but

∂WLEβ, ρ(k)/∂β = Op (A(n/k)) and β̂U (k) − β = Op

(
1/

(√
k A(n/k)

))
, we

are going to get an extra term of the order of 1/
√

k, which is going to modify

the asymptotic variance of our final tail index estimator. When we base the

estimation of β on the scaled log-spacings in (2.5), with the same notation as

before, and noticing that Nk ≡ Z
(1)
k , Z

(α)
k given in (2.10), the term of the order

of 1/
√

k, in WLE
β̂

U
(k), ρ̂

(k), is going to be

γ√
k

(
Z

(1)
k +

(1 − ρ)(1 − 2ρ)
ρ2

(
Z

(1)
k

1 − ρ
− Z

(1−ρ)
k√
1 − 2ρ

))
,

which may be written as

γ√
k

((
1 − ρ

ρ

)2

Z
(1)
k − (1 − ρ)

√
1 − 2ρ

ρ2
Z

(1−ρ)
k

)
.

Since Z
(α)
k are asymptotically standard normal r.v.’s and the asymptotic variance

between Z
(1)
k and Z

(1−ρ)
k is given by

√
1 − 2ρ/(1 − ρ), (3.1) follows. The result

in (3.2) follows in a similar way.
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[15] Rényi, A. (1953). On the theory of order statistics. Acta Math. Acad. Sci. Hung.

4, 191-231.

34


