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Abstract

A class of partially reduced-bias estimators of a positive extreme value index (EVI),
related to a mean-of-order-p class of EVI-estimators, is introduced and studied both
asymptotically as well as for finite samples through a Monte-Carlo simulation study.
We are further interested in the comparison of this class and a representative class of
minimum-variance reduced-bias (MVRB) EVI-estimators, related to a direct removal
of the dominant component of the bias of a classical estimator of a positive EVI, the
Hill estimator, performed in such a way that the minimal asymptotic variance is also
attained by this MVRB class. Heuristic choices of the tuning parameters p and k, the
number of top order statistics used in the estimation, are put forward, and applied to
simulated and real data.
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1 Introduction and preliminaries

Let Xi,..., X, be independent, identically distributed (i.i.d.), or possibly weakly dependent
and stationary random variables (r.v.’s) from an underlying cumulative distribution function
(c.d.f.) F. Let us denote the associated ascending order statistics (0.s.) by Xi., < -+ < X,
and let us assume that there exist sequences of real constants {a, > 0} and {b, € R} such
that the maximum, linearly normalized, i.e. (X,., — b,) /a,, has a non-degenerate limit.
Then the limit distribution is necessarily an extreme value (EV) distribution, denoted EV(-),
with the functional form

[ exp(—(1+&x)7VE), 14+ & >0, if £#£0,
EVe() = { exp(—exp(—z)), = € R, if £€=0. (1.1)

The c.d.f. F'is then said to belong to the max-domain of attraction of EV¢, and we write
F € Dy (EV¢). The parameter € is the extreme value indexr (EVI), the primary parameter
of extreme events, with a low frequency, but with a usually high impact. The EVI measures
the heaviness of the right tail function (RTF), F := 1 — F, and the heavier the tail, the
larger the EVI is. In this paper we shall work with Pareto-type distributions, with a strictly
positive EVI.

1.1 First and second-order conditions for heavy tails

Power laws, such as the Pareto income distribution (Pareto, 1965) and the Zipf’s law for
city-size distribution (Zipf, 1941), have been observed a long time ago in many important
phenomena in economics and biology and have recently seriously attracted scientists. In
statistics of extremes, F is often said to be heavy-tailed whenever the RTF, F, is a regularly
varying (RV) function with a negative index of regular variation equal to —1/§, £ > 0, or
equivalently, with F~(x) := inf{y : F(y) > =} denoting the generalized inverse function of
F, the reciprocal tail quantile function (RTQF), U(t) := F—(1 —1/t), t > 1, is of regular
variation with index £ (for details on regular variation, see Bingham et al., 1987). With the
notation RV, for the class of RV functions with an index of regular variation a, i.e., positive
measurable functions g(-) such that lim; ., g(tx)/g(t) = %, for all = > 0,

F € Dy (EVesg) <= F € RV_yj¢ (Gnedenko, 1943)
<= U € RV, (de Haan, 1984). (1.2)

The second-order parameter, p (< 0), rules the rate of convergence in any of the first-
order conditions in (1.2), and it is the non-positive parameter appearing in the limiting

relation ,
: p_l, if p<O,
Inz, if p=0,

. InU(tx) —InU(t) —{Inx
Jm A(t)

which we assume to hold for every z > 0, and where |A| must then be of regular variation
with index p (Geluk and de Haan, 1987). We shall further assume everywhere in the paper

— () = (1.3)
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that p < 0. We shall also assume that we are working in the more strict Hall-Welsh class of
Pareto-type models (Hall and Welsh, 1985), with an RTF,

F(r) = Cx_1/5(1 + Dya?/t + o(x”/g)), as x — 0o, £ >0, (1.4)

for C > 0, Dy # 0, p < 0. Regarding the RTQF, we can then say that there exist ¢ > 0 and
dy # 0 such that U(t) = ct*(1 + dit” + o(t*)), as t — oo, Therefore, condition (1.3) holds
and we may choose there A(t) = at?, for an adequate «, which we reparameterize as,

A(t) = €617, p < 0. (1.5)

1.2 The class of EVI-estimators under play

For Pareto-type models, the most commonly used EVI-estimators are the Hill estimators
(Hill, 1975), which are the averages of the log-excesses, Vi, i.e.

Xn—i+1:n .
kZV;k; zk Hm, 1§Z§]€<TL. (16)

But since we can write

1/ k 1/k
Zl < n— z+1n> (H n— z+1n> ’ 1§z§k<n,

nkn nkn

the Hill estimator can be thought as the logarithm of the geometric mean (or mean-of-
order-0) of U := {Uiyx := Xy—iv1:/Xn—km, 1 <i <k <n}.More generally, Brilhante et al.
(2013a) considered as basic statistics the mean-of-order-p (MOP) of U, with p > 0, i.e., the

class of statistics )

k 1/p
(%ZU?> , if p>0,
i=1

. 1k
(HUM) i p—o,

Ap(k> = 9

and the class of MOP EVI-estimators,

(1 — A;P(k)) /p, if 0<p<l1/g,
H,(k) = MOP,(k) := (1.7)

In Ag(k) = H(k), if p=0,

with Ho(k) = H(k), given in (1.6). We now state the following result, proved for p = 0 in de
Haan and Peng (1998) and for 0 < p < 1/(2¢) in Brilhante et al. (2013a).



Theorem 1.1 (de Haan and Peng, 1998; Brilhante et al., 2013a). Under the first-order
condition in (1.2) and for intermediate k, i.e. a sequence of integers k = k,, 1 < k < n,
such that

k=k,— oo and k,=o(n), asn — oo, (1.8)

the EVI-estimators Hy(k), in (1.7) are consistent for the estimation of €.
If we further assume the validity of the second-order condition in (1.3), we can write the
following asymptotic distributional representation,

d UHp Iip)

Hp(k) = &+ \/E

by, An/R)(L+ 0,(1)), (1.9)
where Z,E,p) 15 a standard normal r.v.,

1—p¢ £(1 - p)®

by, = by, (&, p) = Tt and oy =0, (§)= o (1.10)

Remark 1.1. We thus have an asymptotic standard normal behavior for Hy(k), in (1.7),

whenever working with values k such that VEA(n/k) — X, finite, but with a high asymptotic

bias when \ # 0, i.e. when we slightly increase k up to values where the mean square error

(MSE) is minimized. This high bias at optimal levels has led several authors to deal with bias

reduction in the field of extremes. Recent overviews can be found in Gomes et al. (2007¢)

(Chapter 6 of Reiss and Thomas, 2007), Gomes et al. (2008a), Beirlant et al. (2012) and
Gomes and Guillou (2014).

Working just for technical simplicity in the particular class of models in (1.4), or equiv-
alently in (1.3) but with A(-) parameterized as in (1.5), the asymptotic distributional rep-
resentation in (1.9), for p = 0, with b, = 1/(1 — p) given in (1.10), led Caeiro et al. (2005)
to directly remove the dominant component of the bias of the Hill EVI-estimator, given by
¢B(n/k)? /(1 — p), considering the corrected-Hill (CH) EVI-estimator,

~

CH(k) = CH, (k) := H(k)(l - f 5 (%)”) (1.11)

which can be a minimum-variance reduced-bias (MVRB) class of EVI-estimators for adequate
second-order parameters’ estimators, (3, p).

Similarly, and with values of p such that the asymptotic normality of the estimators in
(1.7) is known to hold, i.e. 0 < p < 1/(2£), Brilhante et al. (2013b) noticed that there is an

optimal value

P=Dy = $/§  with <pp=1—p/2—\/p2—4p+2/2, (1.12)

which maximises the asymptotic efficiency of the class of estimators in (1.7). These authors
considered an optimal MOP (OMOP) r.v., defined by

OMOP(k) := H,_ (k), (1.13)
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with H,(k) given in (1.7), and for which they derived its asymptotic behaviour. Such a
behaviour has led Gomes et al. (2013a) to introduce an associated optimal reduced-bias
MOP (ORBMOP) r.v.,

RB(k; 3, p) = ORBMOP(k) := OMOP(k) (1 - M@Y), (1.14)
l—p—pp\k
with ¢, and OMOP(k) given in (1.12) and (1.13), respectively. The class of r.v.’s in (1.14)
is similar in spirit to the MVRB CH EVI-estimators in (1.11), and the main reasons for such
a consideration are also similar to the ones presented before, and related to the asymptotic
distributional representation of the MOP class of EVI-estimators, provided in (1.9) and
(1.10).

The dependence of p,,, in (1.12), on (£, p), requires adequate estimates for these two
parameters in order to have OMOP and ORBMOP EVlI-estimators, based in (1.13) and
(1.14), respectively. Therefore, it is reasonable to consider the partially RBMOP (PRBMOP)
class of EVI-estimators based on H,(k), in (1.7), i.e.

RB,(k; 3, p) = PRBMOP, (k) := H, (k) (1 _SU=s) (@)p), (1.15)
L—p—pp \k
dependent again on a flexible tuning parameter p, and on adequate second-order parameters’s
estimators, (B, p).

1.3 Scope of the paper

In this paper, we obtain asymptotic and finite sample distributional properties of the class of
PRBMOP EVI-estimators, in (1.15), comparatively to the classes of Hill and MVRB EVI-
estimators, in (1.6) and (1.11), respectively. More specifically, in Section 2, we present the
asymptotic degenerate and non-degenerate behaviour of the aforementioned PRBMOP class
of EVI-estimators. In Section 3, and through the use of Monte-Carlo simulation techniques,
we exhibit the performance of these RB-estimators, comparatively to the MVRB and the
classical Hill estimators. In Section 4 we provide algorithms for an adaptive PRBMOP
EVlI-estimation, that also includes an algorithm for the adequate estimation of the two
second-order parameters 3 and p, in the lines of the ones presented before in articles related
to MVRB estimation of parameters of extreme events. In Section 5 we provide an illustration
of the behaviour of the EVI-estimators under study for simulated and real samples, drawing
some overall conclusions in Section 6.

2 Asymptotic behaviour of PRBMOP EVI-estimators

2.1 Asymptotic behaviour at a level &

We state and prove the two following theorems.
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Theorem 2.1. Under the validity of the first-order condition, in (1.2), for levels k such that
(1.8) holds, and with RB,(k; 3, p) defined in (1.15), the r.v.’s RB,(k; 3, p) are consistent
for the estimation of &, provided that 0 < p < 1/£. If we further assume the second-order
condition, in (1.3), and with Z,E”Bp asymptotically standard normal r.v.’s, we can write
RB,
URBP k
v + by, A1/ k) (1 4 0p(1)), (2.1)

for 0 <p <1/(26), with oy, = 0, , defined in (1.10), and

RB,(k; 3,p) < €+

W (1-pE—p)(1—p—9,)

Consequently, if Vk A(n/k) — \, finite,

VERB(k: B,0) = &) =5 N (N, 02, ). (2.3)

n—oo

with a null bias if and only if A\ =0 or A # 0 and p = p,, = ¢,/§, with ¢, given in (1.12).

Proof. Under the second-order framework, in (1.3), we know from Brilhante et al. (2013a)
that (1.9) and (1.10) hold, i.e. we have the asymptotic distributional representation

a , EQ-pOVY (11— pO)An/k)
W) = e T 1wy

with Vk(p ) asymptotically standard normal.
Noticing now that

+op (A(n/k)),

RB (k) o= 1,0 (1= 722 (7)),

we easily derive that the dominant component of the bias is given by

(1 —pOAm/k)  (L=p,)Am/k) _ p€ = ¢,)Aln/k)
L—pS—p l—p=¢,  (1=p{=p)(1=p—p,)
i.e. it is null only for p = ¢,/¢. Consequently, with Z,?Bp = Vk(p), (2.1), (2.2) and (2.3)
follow. [

Theorem 2.2. Under the same conditions of Theorem 2.1, let us consider the RB-class of
EVI-estimators, RB,(k; 3, p), in (1.15), for any consistent estimators (3, p) such that

p—p=oy(1/lnn), as n— . (2.4)

~

Then, (2.1) and (2.3) hold with RB,(k; 3, p) replaced by RB,(k; 5, p), the PRBMOP EVI-

estimator, in (1.15).



Proof. If we estimate consistently § and p through the estimators BA and p, we can use
Cramer’s delta-method, and obtain for any of the estimators RB,(k; 3, p), in (1.15), with

Ogp, = _1/(1 - P _pg)a

A

RB, (k: 3,p) — RB,(k; 8, p)
L g, (1 -G/ { (257

where a,, ~ b, means that a, /b, converge in probability to one, as n — oo. Indeed, we can
write,

ORB,(k;B,p) » _Al/k)(1 = pf)
o83 B(L—p—pt)°
ORB,(k; 3,p) »

1 —pg 1 —pg
o 2 —A(n/k:)(mln (n/k) — W).

The result in the theorem follows thus straightforwardly from (2.4) and (2.5). O

)+ =) [Im(n/k) —ag, |} (25)

2.2 Asymptotic comparison of PRBMOP and Hill EVI-estimators
at optimal levels

With 0, = oy, (§) and b, = by, (£, p) given in (1.10) and (2.2), respectively, the so-called
asymptotic mean square error (AMSE) is given by

AMSE (RB,(k)) := 0. /k + b2 A*(n/k).

Regular variation theory, used in the lines of de Haan and Peng (1998), Gomes and Martins
(2001), Gomes et al. (2005, 2007a,b, 2013c), Gomes and Henriques-Rodrigues (2010) and
Caeiro and Gomes (2011), enable us to assert that, whenever b, # 0, there exists a function
n(n) = n(n,§, p), such that

lim n(n) AMSE (RByo) = (02) ™% (12) =% =: LMSE (RB,),

n—oo p

where RB,y := RB,(kojp(n)) and kgjp(n) := argming MSE (RB,(k)). Moreover, if we slightly
restrict the second-order condition in (1.3), assuming that (1.5) holds, i.e. A(t) = £5t?,
p < 0, we can write for p§ # ¢,

Fipo = kyo(n) = arg min MSE (RB, (k)) = (o n2 (1262687 (=20))) 2 (14 o(1)).

We again consider the usual asymptotic relative efficiency (AREFF),

AREFF,, = AREFFRg (10 := \/ LMSE (Hoo) /LMSE (RB,0). (2.6)
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Note that we can further write,

AREFF,|g = ((_Vl—%f)_% (L—p=p)U-p—p)

p(1 = p)(P§ —¢,))

1 —pg

) o

i.e. AREFF,|, depends on (p,&) through pé. If p§ = ¢,, with ¢, given in (1.12), we get an
infinite AREFF-indicator. The AREFF-indicators, AREFF,y, are presented in Figure 1 for
a few values of (p€,p), 0 < p& < 0.5.

AREFF; o

pg

Figure 1: Values of AREFF)g, in (2.7), for different values of (p¢, p)

For the CH EVI-estimator in (1.11), we now know that we can adequately estimate the
vector of second-order parameters (3, p) so that the asymptotic distributional representation

CH
d Ocn Zk

CH(k) & ¢+ 7

holds under the second-order framework in (1.3) and with o, = £ (see Caeiro et al., 2005,
for a proof). Consequently, if we consider an AREFF-indicator of the type of the one in
(2.6), but for the comparison of CHy and Hgy, we get an infinite AREFF-indicator. The

+0p(A(n/k))
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analogue AREFF-indicator, AREFFgrp |cH,, is zero unless p§ = ¢,, and in this case, i.e.
when we consider an ORBMOP EVI-estimator, a study of AREFFgp ,cn, involves deeply
a third-order framework which is beyond the scope of this article.

3 Monte-Carlo simulations

We have run Monte-Carlo simulations for the following heavy-tailed models:
1. the Fréchet; model, with c.d.f. F(z) = exp(—2~'¢), 2 >0, £ > 0, for which p = —1,
2. the EV, model, with c.d.f. F(z) = EV¢(z), given in (1.1) (p = —=¢), and

3. the Student’s ¢,-model with v degrees of freedom, with a probability density function

fo ) =T((v +1)/2) 1+ /v] "2 )(Vav Tw/2), teR (v >0),
for which £ = 1/v and p = —2/v.

We have further considered, out of Hall-Welsh’s class, and also out of the scope of The-
orems 2.1 and 2.2,

4. a model for which the second-order condition in (1.3) does not hold, the sin-Burre ,
model, with an RTQF, U(t) = (t7° —sint=?)~¢/? ¢ > 1.

In all Monte-Carlo simulation experiments we have considered multi-sample simulations
of size 5000 x 20 and sample sizes n = 100, 200, 500, 1000, 2000 and 5000. For details on
multi-sample simulation, we refer Gomes and Oliveira (2001).

3.1 Mean values and MSE patterns of the EVI-estimators, as func-
tions of k

For each value of n and for each of the aforementioned models, we have first simulated
the mean values (E) and root MSEs (RMSEs) of the EVI-estimators in (1.11) and (1.15),
for values of p = a/(10£), a = 0(1)9, as functions of k, the number of top order statistics k
involved in the estimation, and on the basis of the first run of size 5000. As an illustration, we
present Figures 2, 3 and 4, respectively associated with EVj;, Student ¢4 and Sin-Burry .95
parents. Note that for a = 5(1)9, we have consistency of the estimators either in (1.7) or
in (1.15), but no guarantee of asymptotic normality, and even of bias reduction in (1.15)
comparatively to the Hill EVI-estimators. However, as can be seen in all figures, some of
the EVI-estimators in this region can beat the EVI-estimators in the region 0 < p < 1/(2¢),
both regarding bias and RMSE.



El.] RMSET .

0.3

0.2 1

0.1 4
0.1

0 200 400 600 400 600

Figure 2: Mean values (left) and RMSEs (right) of H(k), CH(k) and RB,(k), p = a/10¢, a =
2,4,6,8, for an EVo; (p = —¢ = —0.1) underlying parent

RMSE].]
0.5 0.3
H
0.4
0.2 1 =2
0.3
0.1 A
i =8
0.2 =6
=8
r=|4
0.1 : k 0 (=6 x
0 250 500 0 250 500

Figure 3: Mean values (left) and RMSEs (right) of H(k), CH(k) and RB,(k), p = a/10¢, a =
2,4,6,8, for a Student t,, v =4 (£ =1/v =0.25,p = —2/v = —0.5) underlying parent

E[] RMSE[ ]

CH

0 500 1000 o 100 200

Figure 4: Mean values (left) and RMSEs (right) of H(k), CH(k) and RB,(k), p = a/10¢, a =
2,4,6,8, for a Sin-Burry _g.25 underlying parent
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3.1.1 Mean values of the EVI-estimators at optimal levels

We have further computed the Hill estimator at the simulated value of
Ko := arg min; RMSE (H(k‘)), the simulated optimal &k in the sense of minimum RMSE,
not relevant in practice, but providing an indication of the best possible performance
of Hill’'s estimator. Such an estimator is denoted by Hg. We have also computed
RB,o, i.e. the PRBMOP EVI-estimator RB,(k) computed at the simulated value of
kor, := argminy RMSE(RBp(k)). As an illustration of the bias reduction achieved with
the PRBMOP EVlI-estimators in (1.15) at optimal levels (levels where RMSE are minimal
as functions of k), i.e. the bias of Hyy, CHy and RB,, we present in the following tables, for
n = 100, 200, 500, 1000, 2000 and 5000, the simulated mean values at optimal levels of
H(k), CH(k) and RB,(k), in (1.6), (1.11) and (1.15), respectively, for p = a/(10£), and the
two regions, a = 1(1)4, where we can guarantee consistency and asymptotic normality under
the second-order framework in (1.3), and a = 5(1)9, where only consistency is assured by
Theorem 2.2, and for models in Hall-Wesh class. Information on 95% confidence intervals,
computed on the basis of the 20 replicates with 5000 runs each, is also provided. Among
the estimators considered, the one providing the smallest squared bias in each of the three
regions is written in bold whenever it overpasses the best estimator in the previous region.
If an estimator is not the best one in a region but it outperforms the best EVI-estimator in
the previous region, we write it in stalic.

Remark 3.1. Note that, as proved in Gomes et al. (2013a), for Fréchet models, T/¢ does
not depend on &, again with T denoting any of the aforementioned MOP or RBMOP EVI-
estimators. Also, for sin-Burr models, and just like happens with Burr models (see Gomes et
al., 2013a), any of the statistics T under consideration is also such that T/ is independent

of .

Table 1: Simulated mean values, at optimal levels, of H(k) /¢, CH(k)/§ and RB,(k) /€, p = a/(10£),
a = 1(1)9, for Fréchet underlying parents, together with 95% confidence intervals

n | 100 [ 200 [ 500 [ 1000 [ 2000 [ 5000
Fréchet parents

H 1.109 £0.0027 | 1.085+0.0290 | 1.063+£0.0013 | 1.049+0.0014 | 1.039£0.0009 | 1.029 % 0.0008
CH 0.982 +0.0030 | 0.986 £ 0.0395 | 0.995+0.0016 | 0.999 + 0.0008 | 1.000 £ 0.0005 | 1.000 = 0.0002
a=1 | 0.969+0.0018 | 0.975+0.0008 | 0.979 +0.0007 | 0.980+0.0005 | 0.980=+0.0005 | 0.980 % 0.0002
a=2 || 0.995+0.0030 | 1.004+0.0303 | 1.001+0.0010 | 1.001+0.0008 | 1.0010.0006 | 1.001 4 0.0004
a=3 | 0.994%0.0030 | 1.000£0.0340 | 1.000+0.0012 | 1.001+0.0004 | 1.00040.0003 | 1.000 = 0.0004
a=4 | 0.989+0.0013 | 1.000 +0.0164 | 1.000 +0.0011 | 1.000 =+ 0.0005 | 1.000 = 0.0003 | 1.000 = 0.0003
a=5 || 0.943+£0.0012 | 0.976 +0.0181 | 1.00040.0020 | 0.998£0.0005 | 0.999 £0.0008 | 0.999 + 0.0003
a=6 || 0.866+£0.0011 | 0.893+0.0156 | 0.912+0.0004 | 0.922+0.0004 | 0.93440.0003 | 0.945 =+ 0.0002
a=7 | 0.855+£0.0016 | 0.889+0.0206 | 0.919 4 0.0008 | 0.935+0.0008 | 0.948 £0.0006 | 0.960 = 0.0004
a=8 | 0.822+0.0012 | 0.857+0.0152 | 0.89040.0005 | 0.909 £0.0006 | 0.924+0.0006 | 0.939 % 0.0004
a=9 || 0.785+£0.0012 | 0.821+0.0150 | 0.85440.0005 | 0.8740.0005 | 0.890 = 0.0006 | 0.907 % 0.0004

11




Table 2: Simulated mean values, at optimal levels, of H(k), CH(k) and RB,(k), p = a/(10¢),
a =1(1)9, for EV¢ underlying parents, £ = 0.1,0.25 and 1, together with 95% confidence intervals

n | 100 200 500 1000 [ 2000 [ 5000
EV¢ parent, £ =0.1 (p = —0.1)
H 0.334£0.0009 [ 0.284£0.0007 | 0.243 +£0.0005 | 0.223+£0.0016 | 0.209£0.0014 | 0.195 = 0.0011
CH 0.276 +£0.0016 | 0.258 £0.0014 | 0.234£0.0012 | 0.221+0.0013 | 0.208 £0.0015 | 0.194 = 0.0012
a=1 | 0.251+0.0014 | 0.238+0.0007 | 0.217=+0.0005 | 0.203+0.0008 | 0.192+0.0009 | 0.182=+0.0014
a=2 | 0.2224+0.0009 | 0.227+0.0009 | 0.199+0.0004 | 0.188+0.0005 | 0.178+0.0004 | 0.166 = 0.0005
a=3 | 0.15640.0009 | 0.156+0.0008 | 0.153+0.0003 | 0.15240.0005 | 0.15240.0003 | 0.1520.0001
a=4 | 0.118+0.0008 | 0.117 +0.0006 | 0.115+0.0002 | 0.114 £0.0004 | 0.114 £0.0002 | 0.114 =+ 0.0001
a=5 || 0.098+0.0003 | 0.099+0.0001 | 0.100+0.0001 | 0.100+0.0001 | 0.100+0.0001 | 0.100 £ 0.0001
a=6 | 0.098+0.0003 | 0.100+0.0001 | 0.100+0.0001 | 0.100+0.0001 | 0.100+0.0001 | 0.100+ 0.0001
a=7 | 0.09940.0003 | 0.100=0.0001 | 0.100 +0.0001 | 0.100 % 0.0001 | 0.100 £0.0001 | 0.100 = 0.0001
a= 0.096+0.0004 | 0.100=+0.0001 | 0.10040.0001 | 0.100+0.0001 | 0.10040.0001 | 0.100 = 0.0001
a=9 || 0.088+0.0005 | 0.095+0.0002 | 0.099+0.0001 | 0.100+0.0001 | 0.100+0.0001 | 0.100+0.0001
EV¢ parent, £ = 0.25 (p = —0.25)
H 0.427£0.0012 | 0.391+0.0026 | 0.365=+0.0019 | 0.348 £0.0012 | 0.335=+£0.0013 | 0.321=+0.0010
CH 0.382 +0.0027 | 0.372+0.0021 | 0.353 £0.0014 | 0.342+0.0017 | 0.330 = 0.0008 | 0.317 = 0.0008
a=1 | 0.368+0.0025 | 0.360+0.0018 | 0.346+0.0014 | 0.335+0.0014 | 0.326+0.0007 | 0.814 =+ 0.0008
a=2 | 0.8584+0.0024 | 0.345+0.0017 | 0.835+0.0013 | 0.82740.0014 | 0.8319+0.0007 | 0.8100.0009
a=3| 0.840+0.0024 | 0.358+0.0051 | 0.323+0.0012 | 0.316+0.0012 | 0.8311+0.0007 | 0.304= 0.0009
a=4 | 0.283+0.0011 | 0.291+0.0009 | 0.291+0.0004 | 0.291 % 0.0007 | 0.290 £ 0.0005 | 0.290 = 0.0002
a=5 || 0.242+0.0007 | 0.248 +0.0003 | 0.250 +0.0001 | 0.250 £0.0001 | 0.250 +0.0001 | 0.250 =+ 0.0001
a=6 | 0.2364+0.0008 | 0.246£0.0003 | 0.249+0.0001 | 0.250+0.0001 | 0.25040.0001 | 0.250=0.0001
a=7| 0.228+0.0012 | 0.242+0.0004 | 0.248+0.0001 | 0.249+0.0001 | 0.250+0.0001 | 0.250+ 0.0001
a=8 | 0.2184+0.0012 | 0.230£0.0006 | 0.242+0.0003 | 0.2/6+0.0001 | 0.24840.0001 | 0.249+0.0001
a=9 || 0.197£0.0012 | 0.214/+0.0006 | 0.226+0.0003 | 0.282+0.0001 | 0.287+0.0001 | 0.242=0.0001
EV¢ parent, { =1 (p= —1)

H 1.159£0.0049 | 1.1244+0.0032 | 1.091+0.0030 | 1.072+0.0020 | 1.058 +0.0014 | 1.042 = 0.0009
CH 0.894 +0.0099 | 0.975+0.0046 | 1.003 £0.0024 | 1.004 £0.0013 | 1.003 £ 0.0007 | 1.001 = 0.0004
a=1 | 0.917 £0.0104 | 0.995 £0.0038 | 1.013+£0.0017 | 1.011+0.0011 | 1.007 £ 0.0008 | 1.003 % 0.0004
a=2 | 0.907+0.0122 | 0.983+0.0036 | 1.009 &0.0016 | 1.008+0.0009 | 1.005+0.0005 | 1.002 = 0.0003
a=3 | 0.894+0.0124 | 0.976 +0.0045 | 1.003 £0.0018 | 1.005=0.0008 | 1.003+0.0008 | 1.001 = 0.0005
a=4 | 0.853+£0.0091 | 0.940=+0.0052 | 0.991=+0.0018 | 0.999 +0.0006 | 1.000 = 0.0005 | 1.000 = 0.0004
a=5 || 0.806+£0.0064 | 0.876+0.0032 | 0.912+£0.0015 | 0.924£0.0016 | 0.934£0.0017 | 0.946 + 0.0011
a=6 || 0.763+£0.0055 | 0.840=+0.0048 | 0.894+0.0010 | 0.91340.0010 | 0.927 4 0.0008 | 0.941 =+ 0.0007
a=7 | 0.736+£0.0052 | 0.819+0.0023 | 0.87340.0009 | 0.894=0.0008 | 0.910+0.0008 | 0.927 % 0.0005
a=8 || 0.703+£0.0054 | 0.786=+0.0025 | 0.842+0.0007 | 0.866 =+ 0.0008 | 0.884+0.0006 | 0.904 % 0.0005
a=9 || 0.668+£0.0050 | 0.750=0.0022 | 0.806+0.0006 | 0.831+0.0007 | 0.85040.0006 | 0.871 0.0005

Remark 3.2. The analysis of Tables 1-4 allow us to conclude that:

e Regarding bias, and with the exception of the Student-ty model for values of n < 200
(see Table 3), the PRBMOP EVI-estimators have outperformed at optimal levels the
MVRB EVlI-estimators, for all simulated models (even including the Sin-Burr models,
as illustrated in Table 4).

o [f we compare these results with the ones in Brilhante et al. (2013a) for MOP EVI-
estimation, we see that these PRBMOP EVlI-estimators clearly outperform the MOP
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Table 3: Simulated mean values, at optimal levels, of H(k), CH(k) and RB,(k), p = a/(10¢),
a = 1(1)9, for Student ¢, underlying parents, v = 4 and 2, together with 95% confidence intervals

n | 100 200 500 [ 1000 [ 2000 [ 5000
Students parent (£ =1/4=0.25, p = —0.5)
H 0.361£0.0009 [ 0.339£0.0026 | 0.317£0.0016 | 0.305+0.0013 | 0.296 & 0.0009 | 0.286 % 0.0007
CH 0.311+0.0023 | 0.310£0.0009 | 0.300 = 0.0013 | 0.294 = 0.0008 | 0.288 =£0.0006 | 0.281 = 0.0004
a=1| 0.293+£0.0016 | 0.296+0.0008 | 0.291 +0.0011 | 0.287=+0.0007 | 0.283+0.0006 | 0.277=+0.0004
a=2 | 0.8300+0.0022 | 0.300+0.0010 | 0.294+0.0008 | 0.289+0.0006 | 0.284+0.0005 | 0.278=0.0004
a=3 | 0.285+0.0036 | 0.297+0.0017 | 0.290+0.0005 | 0.285=0.0007 | 0.281+0.0005 | 0.276 = 0.0005
a=4 || 0.255+0.0018 | 0.271+0.0009 | 0.277 +0.0004 | 0.281 +0.0005 | 0.282+0.0005 | 0.283 % 0.0010
a=5 || 0.228+0.0011 | 0.2/2+0.0004 | 0.248 +0.0002 | 0.249 £ 0.0001 | 0.250 +0.0001 | 0.250 = 0.0001
a=6 || 0.213+£0.0014 | 0.28240.0007 | 0.243+0.0003 | 0.2{7=+0.0001 | 0.249+0.0001 | 0.249+0.0001
a=7 | 0.200£0.0010 | 0.221+0.0007 | 0.234+0.0003 | 0.2/0=0.0002 | 0.244+0.0002 | 0.247=+0.0001
a=8 || 0.187£0.0010 | 0.207£0.0006 | 0.220+0.0002 | 0.227£0.0002 | 0.23340.0002 | 0.238 % 0.0001
a=9 || 0.174£0.0009 | 0.193+0.0006 | 0.207£0.0002 | 0.214+0.0001 | 0.21940.0002 | 0.225=+0.0001
Studenty parent (6 =1/2=0.5, p=—1)

H 0.601 £ 0.0039 [ 0.577 £0.0027 | 0.556 +0.0011 [ 0.544 £0.0008 | 0.535+0.0010 | 0.526 + 0.0005
CH 0.464 £ 0.0123 | 0.506 £ 0.0020 | 0.512+0.0011 | 0.507 +0.0006 | 0.504 == 0.0006 | 0.502 % 0.0003
a=1 || 0.456£0.0126 | 0.496+0.0016 | 0.501 £0.0007 | 0./98+0.0005 | 0.495+0.0003 | 0.493 £ 0.0002
a= 0.462 +0.0132 | 0.508 £0.0019 | 0.512+0.0010 | 0.507=+0.0005 | 0.504+0.0003 | 0.502=0.0002
a=3 || 0.44740.0128 | 0.499+0.0018 | 0.510+0.0007 | 0.506=0.0006 | 0.508+0.0003 | 0.501 = 0.0002
a= 0.4254+0.0119 | 0.477+0.0018 | 0.500 +0.0008 | 0.502 = 0.0003 | 0.502 +0.0001 | 0.501 = 0.0002
a=5 || 0.395+£0.0107 | 0.435+£0.0011 | 0.451+0.0005 | 0.455+0.0004 | 0.459 £0.0004 | 0.463 £ 0.0004
a=6 || 0.370£0.0089 | 0.407+0.0011 | 0.43240.0006 | 0.443+0.0005 | 0.451+0.0004 | 0.459 +0.0004
a=7 | 0.35240.0081 | 0.395+0.0009 | 0.42040.0005 | 0.432+0.0006 | 0.441+0.0003 | 0.450 +0.0003
a=28 || 0.335+0.0074 | 0.378+£0.0009 | 0.40540.0004 | 0.418+0.0004 | 0.428+0.0003 | 0.437 = 0.0002
a=9 || 0.3184+0.0067 | 0.361+0.0008 | 0.388+0.0005 | 0.401+0.0004 | 0.411+0.0003 | 0.421 +0.0002

Table 4: Simulated mean values, at optimal levels, of H(k) /&, CH(k)/¢ and RB,(k)/€, p = a/(10£),
a = 1(1)9, for Sin-Burr underlying parents with p = —0.25, together with 95% confidence intervals

Sin-Burr parents with (&, p) = (1, —0.25)

n 100 200 500 1000 2000 5000

H 2.195 + 0.0064 1.921 £+ 0.0032 1.439 £ 0.0016 1.122 +0.0139 1.040 £ 0.0106 1.016 + 0.0066
CH 2.057 £0.0609 | 1.664 +0.0305 | 1.208 +0.0152 | 1.007 £0.0169 | 0.983 +0.0055 | 0.992 + 0.0037
a=1 1.875 4+ 0.0607 1.567 + 0.0304 1.154 + 0.0152 1.002 £ 0.0156 0.987 £ 0.0054 1.000 £ 0.0041
a=2 1.706 £+ 0.0519 1.460 £ 0.0260 1.094 £+ 0.0130 1.002 +0.0072 | 0.989 +0.0032 | 1.000 £ 0.0031
a=3 1.526 4+ 0.0081 1.354 £0.0041 1.035 £ 0.0020 0.998 £ 0.0048 0.987 + 0.0060 0.998 + 0.0024
a=4 1.389 £0.0070 | 1.250 £ 0.0035 | 1.006 £ 0.0018 | 0.987 £ 0.0041 0.986 £ 0.0043 1.003 £ 0.0021
a=>5 1.260 £ 0.0060 1.151 4+ 0.0030 1.016 + 0.0015 0.978 £ 0.0083 0.977 £ 0.0025 1.002 £ 0.0019
a=6 1.143 £+ 0.0052 1.059 £ 0.0026 0.980 £ 0.0013 0.963 £ 0.0078 0.969 £ 0.0027 0.997 £ 0.0018
a=7 | 1.039+0.0045 | 1.015+0.0022 | 0.953 £ 0.0011 0.943 £0.0109 0.958 + 0.0016 0.991 £+ 0.0014
a=28 0.965 £ 0.0100 0.973 £ 0.0050 0.930 £ 0.0025 0.916 £ 0.0133 0.935 £ 0.0018 0.976 £ 0.0009
a=9 0.889 £ 0.0113 0.899 + 0.0056 0.873 £ 0.0028 0.863 £ 0.0125 0.884 + 0.0015 0.930 + 0.0012

EVlI-estimators for a < 7. Again, note that for a > 5 the reduction in bias has not
been correctly done, due to the lack of information on the dominant component of such
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a bias. Despite of that, and comparatively to the H and even CH EVI-estimators, we
do notice a reduction of bias for a =5 and a = 7, whenever |p| < 1 and n is large.

3.1.2 Mean square errors and relative efficiency indicators at optimal levels
We next present the simulated values of the indicators,

RMSE (Hyo)

REFFrp 11 1= =00
"B 1 RMSE (RB,0)

A similar REFF-indicator has also been computed for the CH versus H EVI-estimators.

Remark 3.3. An indicator higher than one means a better performance than the Hill estima-
tor. Consequently, the higher these indicators are, the better the associated EVI-estimators
perform, comparatively to Heyg.

Again as an illustration of the results obtained for RB,(k), in (1.15), we present Tables
5-8. In the first row, we provide RMSEq, the RMSE of Hyg, so that we can easily recover
the RMSE of all other estimators. The following rows provide the REFF-indicators of CH
and RB,, for the same values of p in the previous section, i.e. p = a/(10£), a = 1(1)9. Similar
marks (italic or bold) are used with the same meaning as before. Confidence intervals are
not provided for REFF-indicators larger than 10, but are available from the authors upon
request.

Table 5: Simulated RMSE of H/¢ (first row) and REFF-indicators of CH and RB,, p = a/(10¢),
a =1(1)9, (independent on &), for Fréchet parents, together with 95% confidence intervals

Fréchet parents

n 100 200 500 1000 2000 5000

RMSEoo 0.212 £ 0.1547 0.164 £ 0.9989 0.117 £ 0.1432 0.091 + 0.1345 0.071 £ 0.1255 0.052 £ 0.1136
CH 1.257 £0.0072 | 1.237 +£0.1591 | 1.337 £0.0080 | 1.459 £0.0123 | 1.574 +£0.0123 | 1.795 +0.0111
a=1 1.323 £0.0076 | 1.306 +0.1659 | 1.413 +0.0088 | 1.5394 0.0078 1.655+0.0112 1.883 £ 0.0099
a=2 1.308 £ 0.0086 1.290 £ 0.2260 1.405+0.0090 | 1.541 +£0.0084 | 1.666 + 0.0122 | 1.899 + 0.0094
a=3 1.294 £ 0.0093 1.273 £ 0.2541 1.390 £ 0.0101 1.533 £ 0.0117 1.662 £ 0.0130 1.897 £ 0.0103
a=4 1.306 £ 0.0104 1.278+ 0.2822 1.386+0.0118 1.526 £ 0.0154 1.655+0.0137 1.884 £ 0.0106
a=5 1.305 £+ 0.0092 1.296 4+ 0.2978 1.395 4+ 0.0132 1.528 +0.0150 1.644 4+ 0.0150 1.859 +£0.0126
a= 1.100 £ 0.0072 1.052 +£0.1779 1.003 £+ 0.0054 0.956 + 0.0052 0.918 £ 0.0063 0.849 + 0.0056
a="7 0.939 + 0.0063 0.887 £0.1251 0.823 £ 0.0038 0.782 + 0.0036 0.740 £ 0.0050 0.693 £ 0.0048
a= 0.891 + 0.0063 0.834 £0.1160 0.760 £ 0.0034 0.709 + 0.0035 0.657 £ 0.0044 0.595 + 0.0038
a=9 0.826 £ 0.0058 0.760 £ 0.1077 0.672 £ 0.0031 0.611 + 0.0032 0.551 £ 0.0037 0.480 £ 0.0030

Remark 3.4. For the REFF-indicators obtained:

o [f we restrict ourselves to the region of p-values where we can guarantee asymptotic
normality, the best results were obtained for p = 4/(10€) for all simulated models with
|p| < 1, including the sin-Burr models.
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Table 6: Simulated RMSE of Hyg (first row) and REFF-indicators of CH and RB,,, p = a/(10¢),
a = 1(1)9, for EV¢ underlying parents, £ = 0.1,0.25, 1, together with 95% confidence intervals

n | 100 200 500 1000 [ 2000 [ 5000
EV¢ parent, £ =0.1 (p = —0.1)
RMSEqo || 0.268£0.3511 | 0.216 £0.3211 | 0.174+£0.2890 | 0.151+0.2698 | 0.133£0.2531 | 0.114 %+ 0.2340
CH 1.245 £ 0.0025 | 1.140 +0.0027 | 1.070 £0.0019 | 1.045£0.0011 | 1.029 £0.0011 | 1.019 =+ 0.0008
a=1 1.477£0.0058 | 1.822+0.0032 | 1.217£0.0012 | 1.173+0.0016 | 1.140+0.0018 | 1.107+0.0016
a=2 2.092+0.0130 | 1.68240.0126 | 1.45140.0020 | 1.378+0.0025 | 1.822+0.0035 | 1.266 % 0.0040
a=3 4.8124+0.0791 | 3.785+0.0537 | 3.246+0.0234 | 2.872+0.0305 | 2.559+0.0239 | 2.190=+0.0109
a=4 9.836 + 0.3893 10.909 11.099 10.323 9.478 +0.1815 | 8.161 +0.0673
a=5 15.632 25.159 42.630 62.455 87.575 129.216
a=6 16.399 26.972 46.391 68.072 95.280 139.886
a= 17.586 29.985 52.521 77.803 108.198 158.585
a=38 18.433 34.833 63.818 94.852 133.195 195.479
a= 15.440 27.741 66.819 123.644 189.829 290.002
EV¢ parent, £ = 0.25 (p = —0.25)
RMSEqo [[ 0.246 +0.3353 | 0.200 £ 0.3077 [ 0.157 +£0.2743 [ 0.133+0.2526 | 0.113£0.2332 [ 0.092 +0.2108
CH 1.328 £0.0108 | 1.237 £0.0056 | 1.17140.0042 | 1.130£0.0021 | 1.101 +£0.0021 | 1.072 =+ 0.0020
a= 1.420£0.0083 | 1.819+£0.0051 | 1.236+£0.0034 | 1.185+0.0027 | 1.148+0.0190 | 1.112+0.0013
a=2 1.624+0.0091 | 1.478+0.0057 | 1.851+0.0034 | 1.277+0.0033 | 1.22240.0027 | 1.1710.0011
a= 2.150+£0.0117 | 1.747+0.0164 | 1.521+0.0040 | 1.412+0.0045 | 1.328+0.0040 | 1.252+0.0018
a=4 3.707 £0.1013 | 3.981+0.0705 | 3.637 £0.0362 | 3.183 +0.0568 | 2.78240.0349 | 2.293 £ 0.0148
a=5 5.035 + 0.2271 | 8.099 + 0.3140 13.777 20.164 28.274 42.280
a=6 5.036 +0.2181 | 7.970 % 0.2922 13.269 19.062 26.194 38.046
a=7 4.8234+0.1968 | 7.501+ 0.2558 12.815 17.814 23.111 31.805
a=38 4.329£0.1496 | 6.209+£0.1731 | 9.543+£0.2106 | 13.130 +0.1620 17.199 22.789
a=9 8.786+£0.1015 | 4.62940.0852 | 5.629+0.0789 | 6.444+0.0588 | 7.831+£0.0480 | 8.792+0.0817
EV¢ parent, £ =1 =-1)
RMSEqo [[ 0.314+0.4875 [ 0.2394+0.3105 [ 0.170+0.2741 [ 0.132+0.2455 | 0.104 £0.2192 [ 0.076 £ 0.1883
CH 0.814 £0.1168 | 1.182+0.0230 | 1.410£0.0212 | 1.678 £0.0192 | 2.005 £ 0.0192 | 2.500 + 0.0218
a=1 0.842+£0.1246 | 1.237£0.0226 | 1.449+£0.0196 | 1.696 £0.0181 | 1.999 £0.0181 | 2.472£0.0213
a=2 0.823£0.1244 | 1.22140.0247 | 1.468+0.0219 | 1.760+0.0223 | 2.109+0.0199 | 2.654+0.0230
a=3 0.807 £0.1231 | 1.20240.0279 | 1.497+0.0261 | 1.84/8+0.0281 | 2.257+0.0234 | 2.896+ 0.0270
a=4 0.795+£0.1181 | 1.176 £0.0307 | 1.537 +0.0324 | 1.963 £0.0355 | 2.459 +0.0282 | 3.256 =+ 0.0366
a=5 0.779£0.1086 | 1.081+£0.0252 | 1.254+£0.0240 | 1.341+0.0198 | 1.358 £0.0289 | 1.293 +0.0244
a=6 0.758 £0.0965 | 0.951+0.0138 | 0.960 +0.0064 | 0.936+0.0052 | 0.893 4 0.0050 | 0.821 0.0058
a=7 0.748 £0.0879 | 0.910£0.0124 | 0.901+0.0057 | 0.859+0.0046 | 0.803 +0.0042 | 0.720 & 0.0048
a=38 0.735+£0.0800 | 0.862=+0.0110 | 0.833+£0.0049 | 0.778+0.0044 | 0.71240.0039 | 0.624 % 0.0042
a=9 0.715+0.0718 | 0.806 £0.0093 | 0.753£0.0040 | 0.685+0.0040 | 0.61340.0034 | 0.521 4 0.0034

e Regarding RMSE, the consistent and asymptotically normal PRBMOP EVI-estimators
(0 <p< 1/(2{)), at optimal levels, can always beat the MVRB EVI estimators, also
computed at optimal levels. In Hall-Welsh'’s class, they can however be beaten by the
only consistent PRBMOP EVI-estimators (1/(26) <p< 1/5), at optimal levels, for
all simulated parents again with |p| < 1.

e For large values of n, the MVRB and the MOP methodologies do not work for the
sin-Burr models with p either quite close to zero or to one. For these same models, if
—1 < p < —0.1 the new PRBMOP provide the best results.
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Table 7: Simulated RMSE of Hyy (first row) and REFF-indicators of CH and RB,, p = a/(10¢),
a = 1(1)9, for Student ¢, underlying parents, v = 4, 2, together with 95% confidence intervals

n I 100 [ 200 500 [ 1000 [ 2000 [ 5000
Student-t4 parent (§ =1/4 =0.25,p = —0.5)
RMSEqq 0.183 £ 0.1537 0.143 £0.1511 0.106 £ 0.1420 0.085 + 0.1340 0.070 £ 0.1260 0.054 + 0.1157
CH 1.435 £0.0468 | 1.398 +0.0084 | 1.361 £ 0.0053 | 1.322 £ 0.0057 | 1.283 +0.0057 | 1.236 % 0.0048
a= 1.497+0.0521 1.460+£ 0.0076 1.408 £0.0048 1.360 £ 0.0051 1.314 £ 0.0051 1.261 £ 0.0044
a=2 1.685+0.0723 1.628 £ 0.0096 1.587+0.0063 1.466 £ 0.0053 1.399 £ 0.0052 1.325+£0.0045
a= 2.019£0.1079 1.895+0.0133 1.727+ 0.0090 1.613+0.0070 1.511+0.0064 1.402+ 0.0044
a=4 2.537 £ 0.1657 | 3.455 +0.0597 | 3.319 £0.0347 | 2.676 +0.0445 | 2.146 +0.0346 | 1.607 £ 0.0191
a=>5 2.731+£0.1703 | 4.452 +0.1441 | 7.411£0.1724 10.621 13.843 18.819
a=6 2.602 £ 0.1278 3.807 + 0.1003 5.588 £ 0.1074 7.438 + 0.0988 9.310 £ 0.1649 12.203
a="17 2.421 + 0.0903 3.207 £ 0.0683 4.094 + 0.0566 4.877+ 0.0509 5.591 £ 0.0823 6.588 £ 0.0892
a=38 2.225 +0.0621 2.675 + 0.0446 2.963 £ 0.0264 3.124 + 0.0227 3.215 £ 0.0336 3.321 £ 0.0343
a=9 2.037 £ 0.0430 2.252 4+ 0.0300 2.247 £ 0.0146 2.183 £ 0.0118 2.085 £ 0.0165 1.948+£0.0139
Student-ts parent (£ =1/2=0.5,p= —1)

RMSEqo 0.203 £ 0.5207 0.153 £ 0.1433 0.108 £ 0.1376 0.083 £ 0.1295 0.065 £ 0.1209 0.047 £ 0.1093
CH 0.980+0.1394 | 1.418 £0.0172 | 1.706 £ 0.0152 | 1.944 +0.0179 | 2.227 +0.0179 | 2.641 £ 0.0218
a=1 1.014 +0.1464 1.459+0.0161 1.707+0.0147 1.920 £ 0.0146 2.177 +0.0183 2.553 + 0.0209
a= 1.014 £0.1486 | 1.516+£0.0218 1.849+0.0182 2.107£0.0179 2.4194+0.0215 2.870 £ 0.0237
a=3 1.012+£0.1499 1.582+0.0313 2.083 £+ 0.0246 2.420 4+ 0.0229 2.809 4+ 0.0285 3.380 £ 0.0305
a=4 1.006 £0.1490 | 1.617 +£0.0422 | 2.487 +0.0525 | 3.165 +0.0497 | 3.834 £ 0.0463 | 4.699 + 0.0390
a=2>5 0.984 + 0.1415 1.445 £0.0314 1.726 £ 0.0265 1.676 £ 0.0202 1.514 £0.0170 1.249 £+ 0.0160
a=06 0.949 + 0.1287 1.213 £0.0159 1.209 £ 0.0098 1.133 £ 0.0068 1.052 £+ 0.0062 0.931 £ 0.0054
a="17 0.922 +0.1187 1.112 4+ 0.0120 1.074 £ 0.0077 0.993 + 0.0063 0.911 £ 0.0053 0.795 £ 0.0044
a=38 0.896 £ 0.1102 1.033 £ 0.0096 0.964 + 0.0062 0.873 £ 0.0057 0.787 £ 0.0043 0.670 £ 0.0035
a=9 0.866 + 0.1024 0.957 £ 0.0080 0.862 £ 0.0051 0.765 + 0.0050 0.675 £ 0.0035 0.560 £ 0.0028

Table 8: Simulated RMSE of H/¢ (first row) and REFF-indicators of CH and RB,, p = a/(10¢),
a = 1(1)9, (independent on §), for Sin-Burr underlying parents with (£, p) = (1, —0.25), together
with 95% confidence intervals

Sin-Burr parents with (&, p) = (1, —0.25)

n 100 200 500 1000 2000 5000

RMSEy(H) 1.454 4 1.8487 1.158 +0.6162 0.697 £ 0.1761 0.444 £0.1931 0.308 £ 0.2025 0.193 £ 0.2000
CH 0.894 £0.0887 | 1.1194+0.0296 | 1.158 £0.0085 | 1.014 +0.0052 | 0.942 % 0.0052 0.918 £ 0.0074
a= 0.992 £ 0.1207 1.287 £ 0.0702 1.299 £ 0.0615 1.082 £ 0.0554 0.986 + 0.0059 0.954 + 0.0082
a=2 1.146 + 0.1550 1.509 £+ 0.0717 1.463 + 0.0548 1.156 + 0.0611 1.031 £+ 0.0064 0.988 £ 0.0097
a=3 1.371 £0.1936 1.803 £ 0.0745 1.645 £+ 0.0684 1.242 £0.0675 1.080 £ 0.0074 1.020 £ 0.0103
a=4 1.671 £0.2486 | 2.189 +0.0829 | 1.832 £0.0737 | 1.337 £0.0751 | 1.137 +0.0087 | 1.059 £ 0.0119
a=5 2.059 £ 0.3272 2.673 £ 0.1091 2.046 + 0.0812 1.441 £0.0837 1.200 £ 0.0096 1.111 £ 0.0137
a=6 2.530 £ 0.4313 3.217 £0.1438 2.262 £0.1011 1.543 + 0.0921 1.265 + 0.0116 1.177 £ 0.0156
a="T 3.033 £ 0.5449 3.724 £ 0.1816 2.449+£0.1019 | 1.622£0.0981 | 1.315+0.0131 | 1.247 +0.0181
a=28 3.469 £ 0.6359 4.158 £0.2120 2.555 £ 0.1006 1.650 % 0.0993 1.328 +0.0138 1.285 4+ 0.0198
a=9 3.728 £0.6622 | 4.278 +0.2207 | 2.509 +0.0931 1.595 +0.0917 1.268 £0.0125 1.203 £0.0172
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4 Adaptive PRBMOP EVI-estimation

We now proceed with the description of an algorithm for an heuristic adaptive estimation of
&. In Steps 2, 3 and 4, we present an algorithm similar to the one provided in Gomes and
Pestana (2007b), among others, for the estimation of the second-order parameters 3 and p.
Such a computation enables us to attain the validity of condition (2.4) for a large variety of
underlying parents. This heuristic algorithm, essentially based on sample path stability, is
similar to the ones in Gomes et al. (2013c) and Neves et al. (2014).

Algorithm 1.

Step 1 Given an observed sample (x1,...,x,), compute the observed values of Ho(k) =
H(k), in (1.6), 1 < k <n.

Step 2 Compute for the tuning parameters 7 = 0 and T = 1, the observed values of the
estimators

pr(k) = p(ks 7) 1= —|3(Valks 7) = 1)/ (Va (ks 7) = 3)], (4.1)

the most simple class of estimators in Fraga Alves et al. (2003), wusing

also the same notation p.(k) for those estimates, where, with M,(Lj)(k‘) =
%Zle {n X, ip1m — I X, ¥, § = 1,2,3, and the notation a®™ = blna whenever
T=0,

(Mé”(k))T . (Mé”(k) /2)7/ i |
(Mﬁb?)(k)/Q) v (M7§3)(/<;)/6> e

Valk; ) = TeR.

Step 3 Consider {p,(k)}rexc, for large k, say k € IC = ([n®%°], [n®9]), with|z| denoting
the integer part of x, and compute their median, denoted x,. Next choose the tuning

parameter TF 1= argmin; y . (p-(k) — X:)’
Step 4 Work then with (p, B) = ([’)T*,BT*) = (ﬁT*(kl)>Bﬁ_,*(kfl))} where,
k,l — Ln0.995j , (42)

and

(4.3)

being U; :=i{ln X,,_i11.,, — In X, i} and pr(k) given in (4.1).
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Step 5 Compute
- (1= p)2n—2\1/(1-20)
the estimate of kou := argmin MSE(H(k)) in Hall (1982), and the adaptive EVI-
estimate HOO = HO</%O|H)

Step 6 Fora =0,1,2,...,9 and p = a/(10 Hyy), with Hyy the estimate obtained in Step
5, compute the observed values of T, (k) := RB,(k), 1 <k <n— 1.

Step 7 For any a = 0(1)9, obtain jo., the minimum positive integer value of j, such that
the rounded values, to j decimal places, of the estimates To(k), 1 < k <n—1, are
distinct. Define T,(CTG)(jo,a) = round(T,(k), joa), k =1,2,...,n — 1, the rounded values
of Ta(k) to jo.. decimal places.

Step 8 Consider the sets of k values associated with equal consecutive values of rk (jo a);

obtained in Step 7. Set k:ﬁ,}}; and kSre) the minimum and mazimum values, respectwely,

of the set with the largest range. The largest run size is then s, = kaa“z) — kﬁnTZ‘;L
If there are ties take the minimum a-value, among those ties.

Step 9 Consider all estimates, Ty (k), kpmin = k (Ta) <k< fTa) — = kinaz, now with two extra

decimal places, i.e. compute T,(k) = 7‘,(f )(]Oa + 2). Obtain the mode of T,(k) and
denote K., the set of k-values associated with this mode.

Step 10 Take ]%Ta as the maximum value of K. , and consider the adaptive estimate
Ta(ky,)-

Step 11 The final estimate, denoted fl, 1s the value of T, that corresponds to the maximum
run size s, computed in Step 8.

Remark 4.1. For asymptotic and finite sample details on the estimators of p in (4.1), see
Fraga Alves et al. (2003). The class of p-estimators in (4.1) has been first parameterised in
a tuning parameter T > 0, but more generally T can be considered as a real number (Caeiro
and Gomes, 2006). Interesting alternative p-estimators can be found in Goegebeur et al.
(2008; 2010), Ciuperca and Mercadier (2010), Deme et al. (2013) and Caeiro and Gomes
(2014a). The estimator of (3 in (4.3) has been introduced in Gomes and Martins (2002),
where conditions that enable its asymptotic normality have been set, whenever p is estimated
at a level kv of a larger order than the level k used for the estimation of 3. Details on
the asymptotic distribution of Bﬁ(k;T)(k), in (4.3), can be found in Gomes et al. (2008b) and
Caeiro et al. (2009). We can find alternative [3-estimators in Caeiro and Gomes (2006), and
more recently in Gomes et al. (2010) and Caeiro and Gomes (2012).

Remark 4.2. Step 2 and Step 3 of Algorithm 1 lead in almost all situations to the
tuning parameter 7% = 0 whenever |p| < 1 and 7 = 1, otherwise. Such an educated guess
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can usually provide better results than a possibly ‘noisy’ estimation of T, and it is highly
recommended in practice. For details on this and similar algorithms for the p-estimation,
see Gomes and Pestana (2007a).

Remark 4.3 (Adequate choice of k; for the p-estimation). As stated in Caeiro and Gomes
(2008) the ideal situation would perhaps be the choice of an ‘optimal’ level kfpt for the esti-
mation of p, in the sense of a kfpt that enables us to guarantee the asymptotic normality of
the p-estimators with a non-null asymptotic bias. That level k{® would automatically lead to
condition (2.4), a condition needed for an adequate EVI-estimation. We stress that in prac-
tice, such a k" has only a ‘limited’ interest, at the current state-of-the-art. It is however
of a high theoretical interest. If we consider a level ki of the order of n'=¢, for some small
e >0, we can also guarantee (2.4) for a large class of models (see Caeiro et al., 2009, among
others). This is the reason why, such as done in Caeiro et al. (2005), Gomes and Pestana
(2007a; 2007b) and Gomes et al. (2007a; 2008b), the pioneering papers in MVRB-estimation,
we aduvise in practice, as a compromise between theoretical and practical considerations, the
use of any intermediate level like ki = |n'~¢] for some € > 0, small. The choice of € is not
crucial, and it is sensible to consider the level ki in (4.2). Further considerations on the
choice of ky can be found in Caeiro et al. (2009).

Remark 4.4. Alternatively to the choice kO‘H, in (4.4), we can also use the graphical tool
developed in de Sousa and Michailidis (2004) and more generally in Beirlant et al. (2011),
for a sensible estimation of k through the Hill estimator in (1.6) or any other EVI-estimator.

Alternatively, in order to simplify the computational procedure of identification of ‘runs’
and to provide a better visualization tool, we have further implemented an algorithm similar
to the one already used in Gomes et al. (2013b) for a PORT MVRB EVlI-estimation, replacing
steps from 7 up to 11 by:

Algorithm 2.
Step 7’ In order to detect the sign of the trend in the EVI-estimates, obtain the sign of
sa = Tal[0°%]) = Tu( [0

Step 8’ For k > IQ:O‘H/Q, with I%O‘H given in (4.4), modify the patterns of the estimates, in
the following simple way: If s, > 0, consider

~ Ta(k) if k< kop/2

T,(k) := ~ A 4.5
(k) { max (To(k — 1), To(k)) if k> kom/2. (4:5)

If so <0, replace in (4.5) the max-operator by the min-operator.

Step 9’ For each a = 0(1)9, compute the estimate that provides the “largest run” of
estimates (equal consecutive estimates), say To(k), ko1 < k < koo, with a size
Mg = ka2 — kg1 +1 (thz’s means that Ty(kep) = To(ker +1) =--- = Ta(kaz)).
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Step 10’ Choose the mazximum value of a associated with arg max, m,, denoted by a**.
Step 11’ Consider k™ = kq=« o, and the adaptive EVI-estimate, o= ’T’a(k**)

Remark 4.5. If there are negative elements in the sample, the sample size should be replaced
everywhere in the algorithms by n*, the number of positive elements in the sample.

5 Simulated samples and case-studies

We have considered two randomly simulated samples of size n = 500 from a Burrgas .75
and a Student ¢4 parent (v = 1/4 = 0.25,p = —2/4 = —0.5). We have further considered an
application of the estimators under study to SECURA data, related to the 371 automobile
claim amounts exceeding 1,200,000 Euro over the period 1988-2001, gathered from several
European insurance companies co-operating with the re-insurer Secura Belgian Re (Beirlant
et al. 2004). In Figures 5, 6 and 7, respetively associated with the three above mentioned
samples, we consider on the left the sample paths of RB,(k), p = a/Hpy, a = 0(1)9, and
on the right the sample path associated with the selected value of a and the final adaptive
EVl-estimate, é , obtained in Step 11 of Algorithm 1. Those estimates were respectively
given by & = 0.219 (¢ = 0.25, Hoo = 0.244), £ = 0.232 (¢ = 0.25, Hgo = 0.282) and
fl = 0.219 (Hgp = 0.305). In Tables 9, 10 and 11, we present for the aforementioned samples
and different values of a, the values of k,in, kmae and s, in Step 8 of Algorithm 1. The
number of decimal places, jo,, in Step 7 of Algorithm 1, was always equal to one.

Ta(k) Ts(k)

T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Figure 5: Sample paths of RB,(k), p = a/Hpo, a = 0(1)9 (left), and sample path associated with
the selected value of a, together with the final adaptive EVI-estimate (right), for the Burrg s —o.75
sample
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0.0 0.15
T T T T T T T T T T
0 100 200 300 400 500 0 100 200 300 400 500

Figure 6: Sample paths of RB,(k), p = a/Hoo, a = 0(1)9 (left), and sample path associated with
the selected value of a, together with the final adaptive EVI-estimate (right), for the Student t4
sample

Ta(k) TS(k)
0.30 0.24 7
0.22 -
0.25
0.20
0.20 0.18
0.16
0.15
T T T T
0 100 200 300
k k

Figure 7: Sample paths of RB,(k), p = a/Hoo, a = 0(1)9 (left), and sample path associated with
the selected value of a, together with the final adaptive EVI-estimate (right), for SECURA data

The application of Algorithm 2 to aforementioned samples, but with the inclusion
of the value a = 10, for curiosity, led us to the results presented in Table 12. For the
Burrg .95 —0.75 sample, we have been led to £ = 499, ™ = 9 and fg = 0.179. For the
Student-t4 sample (£ = 0.25), we have been led to k™ = 504, a** = 9 and ég = (0.252. For
the SECURA data, we have been led to £** = 370, ™ = 9 and 52 = 0.218.
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Burrg 25 —0.75 sample
a 0 1 2 3 4 5 6 7 8 9
kmin | 160 160 182 15 15 15 20 20 21 23
kmaz | 389 449 484 212 460 499 499 499 473 377
ST, 230 290 303 198 446 485 480 480 453 355

Table 9: Values of kpin, kmaz and s7,, in Step 8 of Algorithm 1, for the Burrg a5 .75 sample

Student t4 sample
a 0 1 2 3 4 5 6 7 8 9
kmin | 158 186 242 50 50 71 77 31 4 4
kmaz | 285 331 420 291 516 511 351 516 516 465
sT, 128 146 179 242 467 441 275 486 513 462

Table 10: Values of kpyin, kmaz and s, in Step 8 of Algorithm 1, for the Student ¢4 sample

SECURA data
a 0 1 2 3 4 5 6 7 8 9
kmin | 228 232 55 54 50 5 5 5 5 5
kmaz | 370 370 240 316 370 370 370 370 370 370
ST, 143 139 186 263 321 366 366 366 366 366

Table 11: Values of kpin, kmaz and s, in Step 8 of Algorithm 1, for the SECURA data

e« O 1 2 3 4 5 6 7 8 9 10
Burrg .25 —0.75 sample

ma\ 70 56 70 71 157 281 310 310 391 391 23
Student t4 sample

Mg ‘ 104 104 103 103 104 155 262 289 431 431 48
SECURA data
My, ‘ 297 272 276 324 324 324 324 324 324 324 104

Table 12: Values of m,, in Step 9’ of Algorithm 2, for the the three data sets
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6

Concluding remarks

For the simulated samples, we know the true value of £, and we can easily assess the
reliability of the estimates provided by the algorithms in Section 4, immediately coming
to the conclusion that, as expected, the PRBMOP methodology and both algorithms
provide a quite reliable EVI-estimation for the Student sample, but under estimate the
EVI for the Burr sample.

It is well-known that the adaptive Hill EVI-estimation usually leads to an over-
estimation of the EVI. The adaptive PRBMOP seem to be closer to the target value.
However, and again for the Burr sample, even the adaptive Hill EVI-estimate is below
the target value.

Regarding the application to the SECURA real data set, the sample path associated
with @ = 6 is quite stable up to & = n — 1, but this had already happened with the
application of reduced-bias EVI-estimation to the data (see Gomes et al., 2007a, and
Caeiro and Gomes, 2014b, among others).

These case studies claim obviously for a simulation comparative study of the algo-
rithms. This is however a topic beyond the scope of this paper.
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