- Prof. Paulo Justiniano Ribeiro Júnior
Universidade Federal do Paraná – Brasil - FCUL – DEIO – Bloco C/2 – Piso 2 – Sala 2.2.46
- Segunda-feira, 1 de Julho de 2002 a Quinta-feira, 4 de Julho de 2002
Introduction
- Basic Examples of Spatial Data
- A Taxonomy for Spatial Statistics
- Further Examples of Geostatistical Problems
- Characteristic Features of Geostatistical Problems
- Some History
- Core Geostatistical Problems
- Model Based Geostatistics
Spatial Prediction and Gaussian Models
- Stochastic Process Prediction
- Linear Geostatistics
- The Gaussian Model
- Specification of the Correlation Function
- Prediction under the Gaussian Model
- What does Kriging Actually do to the Data
- Prediction of Functionals
- Directional Effects
- Non-stationary Gaussian Models
Parametric Estimation
- Second-Moment Properties
- Variogram Analysis
- Likelihood Inference
- Plug-in Prediction
- Gaussian Transformed Models
- A Case Study
- Anisotropic Models
- Model Validation
Bayesian Inference for the Gaussian Model
- Basic Concepts
- Bayesian Analysis of the Gaussian Model
- A Case Study
Generalised Linear Spatial Models
- Generalized linear mixed models
- Inference for the generalized linear geostatistical model
- Application of MCMC to Generalized Linear Prediction
- Case-study: Rongelap Island
- Case-study: Gambia Malaria
Further Topics
- Multivariate models
- Non-linear differential equations
- Space time models
- Marked point processes
- Closing remarks
Nota: O curso será acompanhado de aulas práticas em que, será utilizado o programa estatístico R. Para análises geoestatísticas em particular serão utilizados os pacotes geoR e geoRglm que são complemento ao R.